

Lecture Notes in Bioinformatics 5267
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Craig E. Nelson Stéphane Vialette (Eds.)

Comparative
Genomics

International Workshop, RECOMB-CG 2008
Paris, France, October 13-15, 2008
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Craig E. Nelson
University of Connecticut
Division of Genetics and Genomics, Molecular and Cell Biology
Beach Hall, 354 Mansfiled Rd, Storrs, CT 06269, USA
E-mail: craig.nelson@uconn.edu

Stéphane Vialette
Université Paris-Est, IGM-LabInfo UMR 8049
5 Bd Descartes, Champs sur Marne, 77454 Marne la Vallée, France
E-mail: vialette@univ-mlv.fr

Library of Congress Control Number: 2008936578

CR Subject Classification (1998): F.2, G.3, E.1, H.2.8, J.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-87988-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87988-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12533763 06/3180 5 4 3 2 1 0

Preface

Over the last decade great investments have been made in the acquisition of
enormous amounts of gene sequence data from a diverse collection of organ-
isms. Realizing the full potential of these investments will require the continued
development of computational tools for comparative genomics and the intelli-
gent application of these tools to address biologically relevant questions. The
RECOMB Workshop on Comparative Genomics (RECOMB-CG) is devoted to
bringing together scientists working on all aspects of comparative genomics, from
the development of new computational approaches to genome sequence analysis
and comparison, to the genome-wide application of computational tools to study
the evolutionary dynamics of prokaryotic and eukaryotic genomes.

This volume contains the 19 papers presented at the 6th Annual RECOMB-
CG workshop held during October 13–15 at the École Normale Supérieure, in
Paris, France. The papers selected for presentation and published in these pro-
ceedings were selected from 48 submissions from scientists around the world.
Each paper was reviewed by at least three members of the Program Committee
in a stringent and thoughtful peer-review process.

The conference itself was enlivened by invited keynote presentations from
Laurent Duret (Université Claude Bernard), Aviv Regev (Broad Institute), Chris
Ponting (University of Oxford), Olga Troyanskaya (Princeton University), and
Patricia Wittkopp (University of Michigan). These talks were supplemented by
both presentation of the papers in this volume and a series of “late-breaking
talks” selected from a wide-ranging and provocative poster session. Together,
these talks and papers highlighted the acceleration of comparative genomics
tools and applications. From the inference of evolution in genetic regulatory
networks, to the divergent fates of gene and genome duplication events, to the
importance of new computational approaches to unraveling the structural evo-
lution of genomes, these presentations illustrate the crucial role of comparative
genomics in understanding genome function.

RECOMB-CG 2008 would not have been possible without the participation
of the many scientists who contributed their time and effort to making the con-
ference a success. We thank the scientists who submitted their work for presen-
tation at the conference, those members of the Program Committee who made
every effort to ensure fair and balanced review of the many papers submitted
for consideration at this year’s workshop, the members of the local Organizing
Committee for arranging all the myriad details of the organizational aspects of
the event, and the continued efforts of the Steering Committee for their on-
going dedication and guidance. RECOMB-CG 2008 is also deeply indebted to
its sponsors including the Centre National de la Recherche Scientifique (CNRS),
the GdR BiM, the Université Paris-Est Marne-la-Vallée, the Université de Nantes
and the Institut National de Recherche en Informatique et Automatique (INRIA

VI Preface

Rhône-Alpes), and to the École Normale Supérieure Paris for hosting the con-
ference.

It is the continued support and dedication of this community that allows
RECOMB-CG to bring together comparative genomics researchers from across
the globe to exchange ideas and information and focus the force of comparative
genomics on improving our understanding genome evolution and function.

July 2008 Craig E. Nelson
Stéphane Vialette

Organization

Program Chairs

Craig E. Nelson University of Connecticut, USA
Stéphane Vialette Université Paris-Est, France

Program Committee

Lars Arvestad KTH, Sweden
Véronique Barriel Muséum National d’Histoire Naturelle, France
Anne Bergeron Université du Québec Montréal, Canada
Guillaume Blin Université Paris-Est, France
Guillaume Bourque Genome Institute of Singapore, Singapore
Jeremy Buhler Washington University in St. Louis, USA
Pierre Capy Université Paris-Sud, France
Cédric Chauve Simon Fraser University, Canada
Avril Coghlan Sanger Institute, UK
Miklós Csuros Université de Montréal, Canada
Aaron Darling University of Queensland, Australia
Sankoff David University of Ottawa, Canada
Bernard Dujon Institut Pasteur, France
Dannie Durand Carnegie Mellon University, USA
Nadia El-Mabrouk Université de Montréal, Canada
Niklas Eriksen Göteborg University, Sweden
Guillaume Fertin Université de Nantes, France
Olivier Gascuel Université de Montpellier, France
Henri Grosjean Université Paris-Sud, France
Matthew Hahn Indiana University, USA
Tao Jiang University of California - Riverside, USA
Jens Lagergren Stockhom Bioinformatics Centre and KTH, Sweden
Emmanuelle Lerat Université Claude Bernard, France
Aoife McLysaght University of Dublin, Ireland
Bernard Moret École Polytechnique Fédérale de Lausanne,

Switzerland
Michal Ozery-Flato University of Tel-Aviv, Israel
Pierre Pontarotti Université de Provence, France
Eduardo Rocha Université Paris 6 et Institut Pasteur, France
Hugues Roest Crollius École Normale Supérieure, France
Antonis Rokas Vanderbilt University, USA
Marie-France Sagot INRIA Rhône-Alpes, France
Cathal Seoighe University of Cape Town, South Africa

VIII Organization

Jens Stoye Bielefeld University, Germany
Chuan-Yi Tang National Tsing Hua University, Taiwan
Eric Tannier INRIA Rhône-Alpes, France
Glenn Tesler University of California - San Diego, USA
Louxin Zhang National University of Singapore, Singapore

External Reviewers

Max Alekseyev
Sébastien Angibaud
David Enard
Claire Herrbach

Charles Hébert
Jian Ma
Matthieu Muffato
Aida Ouangraoua

Irena Rusu
Maureen Stolzer
Sara Vieira-Silva

Steering Committee

Jens Lagergren Stockhom Bioinformatics Centre and KTH, Sweden,
Aoife McLysaght Trinity College Dublin, Ireland
David Sankoff University of Ottawa, Canada

Sponsoring Institutions

CNRS http://www.cnrs.fr/index.html
Université Paris-Est http://www.univ-paris-est.fr
Université de Nantes http://www.univ-nantes.fr
GDR Bioinformatique Moléculaire http://www.gdr-bim.u-psud.fr
INRIA Rhône-Alpes http://www.inrialpes.fr

Local Organization

Sèverine Bérard Université de Montpellier, France
Guillaume Blin Université Paris-Est France
Maxime Crochemore Université Paris-Est France
Guillaume Fertin Université de Nantes, France
Hugues Roest Crollius École Normale Supérieure, France
Éric Tannier INRIA Rhône-Alpes, France
Jean-Stéphane Varré INRIA Futurs - Université de Lille, France
Stéphane Vialette Université Paris-Est France

RECOMB CG 2008 website http://igm.univ-mlv.fr/RCG08/

Table of Contents

Algorithms for Exploring the Space of Gene Tree/Species Tree
Reconciliations . 1

Jean-Philippe Doyon, Cedric Chauve, and Sylvie Hamel

Limitations of Pseudogenes in Identifying Gene Losses 14
James C. Costello, Mira V. Han, and Matthew W. Hahn

Duplication Mechanism and Disruptions in Flanking Regions Influence
the Fate of Mammalian Gene Duplicates . 26

Paul Ryvkin, Jin Jun, Edward Hemphill, and Craig Nelson

Estimating the Relative Contributions of New Genes from
Retrotransposition and Segmental Duplication Events during
Mammalian Evolution . 40

Jin Jun, Paul Ryvkin, Edward Hemphill, Ion Măndoiu, and
Craig Nelson

Discovering Local Patterns of Co-evolution . 55
Yifat Felder and Tamir Tuller

Ancestral Reconstruction by Asymmetric Wagner Parsimony over
Continuous Characters and Squared Parsimony over Distributions 72

Miklós Csűrös

An Alignment-Free Distance Measure for Closely Related Genomes 87
Bernhard Haubold, Mirjana Domazet-Los̆o, and Thomas Wiehe

Gene Team Tree: A Compact Representation of All Gene Teams 100
Melvin Zhang and Hon Wai Leong

Integrating Sequence and Topology for Efficient and Accurate Detection
of Horizontal Gene Transfer . 113

Cuong Than, Guohua Jin, and Luay Nakhleh

An Evolutionary Study of the Human Papillomavirus Genomes 128
Dunarel Badescu, Abdoulaye Baniré Diallo,
Mathieu Blanchette, and Vladimir Makarenkov

An Algorithm for Inferring Mitogenome Rearrangements in a
Phylogenetic Tree . 143

Matthias Bernt, Daniel Merkle, and Martin Middendorf

Perfect DCJ Rearrangement . 158
Sèverine Bérard, Annie Chateau, Cedric Chauve,
Christophe Paul, and Eric Tannier

X Table of Contents

Sorting Genomes with Insertions, Deletions and Duplications by DCJ . . . 170
Sophia Yancopoulos and Richard Friedberg

A Fast and Exact Algorithm for the Median of Three Problem—A
Graph Decomposition Approach . 184

Andrew Wei Xu

A Phylogenetic Approach to Genetic Map Refinement 198
Denis Bertrand, Mathieu Blanchette, and Nadia El-Mabrouk

Sorting Cancer Karyotypes by Elementary Operations 211
Michal Ozery-Flato and Ron Shamir

On Computing the Breakpoint Reuse Rate in Rearrangement
Scenarios . 226

Anne Bergeron, Julia Mixtacki, and Jens Stoye

Hurdles Hardly Have to Be Heeded . 241
Krister M. Swenson, Yu Lin, Vaibhav Rajan, and
Bernard M.E. Moret

Internal Validation of Ancestral Gene Order Reconstruction in
Angiosperm Phylogeny . 252

David Sankoff, Chunfang Zheng, P. Kerr Wall, Claude dePamphilis,
Jim Leebens-Mack, and Victor A. Albert

Author Index . 265

Algorithms for Exploring the Space of Gene

Tree/Species Tree Reconciliations

Jean-Philippe Doyon2, Cedric Chauve1, and Sylvie Hamel2

1 Department of Mathematics, Simon Fraser University, 8888 University Drive,
V5A 1S6, Burnaby (BC), Canada

cedric.chauve@sfu.ca
2 DIRO, Université de Montréal, CP6128, succ. Centre-Ville,

H3C 3J7, Montréal (QC), Canada
{hamelsyl,doyonjea}@iro.umontreal.ca

Abstract. We describe algorithms to explore the space of all possible
reconciliations between a gene tree and a species tree. We propose an
algorithm for generating a random reconciliation, and combinatorial op-
erators and algorithms to explore the space of all possible reconciliations
between a gene tree and a species tree in optimal time. We apply these
algorithms to simulated data.

1 Introduction

Genomes of contemporary species, especially eukaryotes, are the result of an evo-
lutionary history, that started with a common ancestor from which new species
evolved through evolutionary events called speciations. One of the main objec-
tives of molecular biology is the reconstruction of this evolutionary history, that
can be depicted with a rooted binary tree, called a species tree, where the root
represents the common ancestor, the internal nodes the ancestral species and
speciation events, and the leaves the extant species. Other events than specia-
tion can happen, that do not result immediately in the creation of new species
but are essential in eukaryotic genes evolution, such as gene duplication and
loss [12]. Duplication is the genomic process where one or more genes of a single
genome are copied, resulting in two copies of each duplicated gene. Gene du-
plication allows one copy to possibly develop a new biological function through
point mutation, while the other copy preserves its original role. A gene is said to
be lost when it has no function or is fully deleted from the genome. (See [12] for
example). Other genomic events such as lateral gene transfer, that occurs mostly
in bacterial genomes, will not be considered here. Genes of contemporary species
that evolved from a common ancestor, through speciations and duplications, are
said to be homologs [9] and are grouped into a gene family. The evolution of a
gene family can be depicted with a rooted binary tree, called a gene tree, where
the leaves represent the homologous contemporary genes, the root their common
ancestral gene and the internal nodes represent ancestral genes that have evolved
through speciations and duplications.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J.-P. Doyon, C. Chauve, and S. Hamel

Given a gene tree G and the species tree of the corresponding genomes S, an
important question is to locate in S the evolutionary events of speciations and
duplications. A reconciliation between G and S is a mapping of the genes (extant
and ancestral) of G onto the nodes of S that induces an evolutionary scenario,
in terms of speciations, duplications and losses, for the gene family described by
G. In this perspective, the notion of reconciliation was first introduced in the
pioneering work of [10] and a first formal definition was given in [17] to explain
the discrepancies between genes and species trees. The LCA-mapping, that maps
a gene u of G onto the most recent species of S that is ancestor of all genomes that
contain a gene descendant of u, is the most widely used mapping, as it depicts
a parsimonious evolutionary process according to the number of duplications
or duplications and losses it induces. It is widely accepted that parsimony is a
pertinent criterion in evolutionary biology, but that it does not always reflects
the true evolutionary history. This lead to the definition of more general notions
of reconciliations between a gene tree and a species tree [2,11,1] and the natural
problem of exploring non-optimal (for a given criterion) reconciliations, and then
alternative evolutionary scenarios for gene families.

The main concern of our work is the development of algorithms for exploring
the space of the reconciliations between a gene tree and a species tree. After
introducing a very general notion of reconciliation (Section 2), we describe in
Section 3 an algorithm that generates a random reconciliation under the uni-
form distribution, in Section 4.1 combinatorial operators that are sufficient to
explore the complete space of reconciliations between a gene tree and a species
tree, and in Section 4.2 an algorithm that explores exhaustively this space and
computes in optimal time the distribution of reconciliation scores in the dupli-
cation, loss, and mutation (duplication + loss) cost models. (All proofs will be
given in a future technical report [6]). There are several applications of our algo-
rithms in functional and evolutionary genomics, such as inferring orthologs and
paralogs [8,14], the gene content of an ancestral genome [16], or in the context
of Markov Chain Monte Carlo analysis of gene families [1]. We illustrate our
algorithms with experiments on simulated gene families in Section 5 computed
using duplication and loss rates taken from [13]. Our experiments suggest that,
at least for some real datasets, the use of a parsimony model may be justified.

2 Preliminaries

Let T be a binary tree with vertices V (T) and edges E(T), and such that only its
leaves are labeled. Let r(T), L(T), and Λ (T) respectively denote its root, the set of
its leaves, and the set of the labels of its leaves. We will adopt the convention that
the root is at the top of the tree and the leaves at the bottom. A species tree S is a
binary tree such that each element of Λ (S) represents an extant species and labels
exactly one leaf of S (there is a bijection between L(S) and Λ (S)). A gene tree G
is a binary tree. From now on, we consider a species tree S, with |V (S)| = n and
a gene tree G such that Λ (G) ⊆ Λ (S) and |V (G)| = m. Let σ : L(G) → L(S) be
the function that maps each leaf of G to the unique leaf of S with the same label.

Algorithms for Exploring the Space 3

For a vertex u of T , we denote by u1 and u2 its children and by Tu the subtree
of T rooted at u. For a vertex u ∈ V (T) \ {r(T)}, we denote by p(u) its parent.
A cell of a tree T is either a vertex of T or an edge of T . Given two cells c and
c′ of T , c′ ≤T c (resp. c′ <T c) if and only if c is on the unique path from c′ to
r(T) (resp. and c �= c′); in such a case, c′ is said to be a descendant of c. The
LCA-mapping M : V (G) → V (S) maps each vertex u of G to the unique vertex
M(u) of S such that Λ(SM(u)) is the smallest cluster of S containing Λ (Gu).

Definition 1. A reconciliation between a gene tree G and a species tree S is a
mapping α : V (G) → V (S) ∪ E(S) such that

1. (Base constraint) ∀u ∈ L(G), α (u) = M(u) = σ(u).
2. (Tree Mapping Constraint) For any vertex u ∈ V (G) \ L(G),

(a) if α (u) ∈ V (S), then α (u) = M(u).
(b) If α (u) ∈ E(S), then M(u) <S α (u).

3. (Ancestor Consistency Constraint) For any two vertices u, v ∈ V (G), such
that v <G u,
(a) if α (u) , α (v) ∈ E(S), then α (v) ≤S α (u),
(b) otherwise, α (v) <S α (u).

Remark 1. This definition of reconciliation differs slightly from the classical ones
as vertices of G can be mapped onto edges of S, in order to represent duplication
events (see explanations below). However, it is equivalent to the definitions given
in [1,11], that are the most complete ones known so far, and it is more general
than the Inclusion-Preserving mapping of [2].

The whole set of reconciliations between a gene tree G and a species tree S is
denoted Ψ(G, S). A reconciliation α of Ψ(G, S) implies an evolutionary scenario
for the genes of G in terms of gene duplications, gene losses, and speciations. A
vertex u of G that is mapped onto an edge (x, y) of S (where x = p(y)) represents
a gene of the ancestral species p(y) that has been duplicated in y. If u is mapped
onto an internal vertex x of S, then this represents a gene that will be present
in a single copy in the two genomes x1 and x2 following a speciation event that
happened to x. It is important to point out that the number of reconciliations
is finite. Briefly, a reconciliation α between G and S represents any birth-and-
death scenario along S such that the resulting gene tree is consistent with G and
each duplication event that implies an internal node u of G is consistent with
the mapping α(u). (See Figure 1).

We denote by dup(α) and los(α) respectively the number of duplications and
losses induced by a reconciliation α. dup(α) is the number of vertices of G that
are mapped onto an edge of S (see below1). Given two cells c, c′ ∈ V (S)∪E(S),
where c′ <S c, D(c, c′) is the number of vertices x ∈ V (S) such that c′ <S x <S c.
Also, if c = c′, then D(c, c′) = 0. The number of losses associated to a vertex
1 To consider duplication that preceds the first speciation event represented by r (S),

we can insert in S an “artificial” cell c such that r(S) <S c. For space reason, we
assume here that no duplication occurs in the most ancestral species. The details to
account for such early duplications will be described in the full version of this paper.

4 J.-P. Doyon, C. Chauve, and S. Hamel

A B C DA1 B1 A2 B2 C1 D1

1

2

G
S

3

4
5

(a)

1

2

A1 B1A2 B2 C1

3

4
5

D1

(b)

1

2

A1 B1A2 B2 C1

3

4
5

D1

(c)

Fig. 1. (a) Left: gene tree G. Right: species tree S. The arrows represent the LCA-
mapping between G and S. (b) A reconciliation between G and S. The red circles
represent speciation events, and the green squares, duplications. (c) A birth-and-death
scenario that is consistent with the reconciliation. A cross represents a gene loss. The
right lineage of the first duplication has no extant gene that descents from it, as opposite
to its left lineage. We then say that this duplication is hypothetical, because it is not
a useful information for the evolutionary scenario of the extant genes of G along S.
Hence, such duplication is not depicted by the reconciliation.

u ∈ V (G) \ L(G) is noted lu and equal to D
(
α(u), α(u1)

)
+ D

(
α(u), α(u2)

)
(see [15] for example). los(α) is then the sum of lu over all internal vertices u.
The third constraint of Definition 1 leads to the notion of forced duplication,
that corresponds to vertices of G that can only be mapped onto an edge of S:
an internal vertex u ∈ V (G) \L(G) is said to be a forced duplication if and only
if M(u) = M(u1) or M(u) = M(u2).

For a vertex u ∈ V (G), a cell of S covers it if u can be mapped onto this cell
according to Definition 1. The set of cells that can cover it is denoted by A(u)
and is defined below.

A(u) =

⎧⎪⎨⎪⎩
{
M(u)

}
if u ∈ L(G) or u = r(G){

c ∈ E(S) : M(u) <S c
}

if u is a forced duplication{
c ∈ E(S) : M(u) <S c

}
∪ {M(u)} otherwise

It is important to point out that there is three mappings that are considered
here: M(u), α(u), and A(u). From now on, except when indicated, the term
mapping will refer to the reconciliation mapping α(u) of Definition 1.

Algorithms for Exploring the Space 5

Finally, combinatorial and probabilistic criteria can be used to compare the
different possible reconciliations and pick one that is supposed to reflect the
most the true evolution of G according to S. Three parsimonious cost models,
that aim to minimize the number of genomic events, have been proposed so far:
duplication [15], loss [4], and mutation (duplication+loss) [15]. Arvestad et al.
also introduced a notion of likelihood of a reconciliation in the framework of
birth-and-death processes [1].

3 Counting and Uniform Random Generation

In this section, we describe an efficient algorithm that computes a random rec-
onciliation between G and S following the uniform distribution. This problem
is important in the context of MCMC analysis for gene families, as a major
issue is to analyze if the Markov chain converges to the true posterior probabil-
ities. One of the most popular and simple tests of convergence is to run several
Markov chains, each starting at a different state in the space, which motivates
our random generation algorithm.

As usual in uniform random generation, it is based on a preprocessing that
computes the cardinality of Ψ(G, S) [5]. We first address this problem, then
describe the random generation algorithm.

For every node u ∈ V (G) and cell c ∈ A(u), we denote by Nb(u, c) the number
of reconciliations of Gu and Sc for which u is mapped on c. It follows immediately
that |Ψ(G, S)| = Nb

(
r (G) , r (S)

)
.

Lemma 1. Let u ∈ V (G) and c ∈ A(u) be a cell that covers u. Then Nb(u, c) =
1 if u ∈ L(G), and otherwise

Nb(u, c) =
∑

c1∈A(u1), c1≤Sc

Nb(u1, c1)
∑

c2∈A(u2), c2≤Sc

Nb(u2, c2). (1)

Proposition 1. |Ψ(G, S)| can be computed in O(mn) time and space.

It follows from the work [4] that there is a single optimal reconciliation for the
loss and mutation costs, but that there can be several ones for the duplication
cost. Building on Lemma 1, we also get the following result, that is of interest
with respect to this point.

Proposition 2. The number of reconciliations of Ψ(G, S) that minimizes the
duplication cost can be computed in O(mn) time and space.

The algorithm 1.1 below computes a random reconciliation between G and S.
For a node u ∈ V (G) and a cell c ∈ A(u), let f(c) (d(c)) be the ancestor (resp.
descendant) cell of c in A(u), that is the cell of A(u) that is the closest one
to c and above (resp. below) it. The lowest cell of A(u) is the one that has no
descendant cell in A(u).

6 J.-P. Doyon, C. Chauve, and S. Hamel

Algorithm 1.1. Uniform random generation in Ψ(G, S).
1: Let α be an empty reconciliation.
2: Perform a prefix traversal of G, and let u ∈ V (G) be the current node.
3: if u = r (G) or u ∈ L(G) then α (u)←M(u)
4: else
5: Let ĉ← α(p(u)).
6: {Choose randomly a cell c ∈ A(u) such that c ≤S ĉ}
7: Let k ←

∑
c∈A(u),c≤S ĉ

Nb(u, c)

8: Generate randomly and uniformly an integer n ∈ {1, . . . , k}.
9: c← lowest cell in A(u) {If u is a forced duplication, then M(u) /∈ A(u)}

10: l← Nb(u, c)
11: while l < n do c← f(c), l ← l + Nb(u, c)
12: α (u)← c
13: return α

Theorem 1. Given a reconciliation α ∈ Ψ(G, S), Algorithm 1.1 returns α with
probability 1

|Ψ(G,S)| . Given the table Nb and the sets A(u) for every node u of G,

it can be implemented to run in O(mn) space and Θ(mn) time in the worst case
and Θ(m) time in the best case.

Hence, the preprocessing time of our algorithm (computing the table Nb and the
sets A(u)) requires O(mn) time and space. However, it needs to be done once
and can be used for generating several random reconciliations.

Our algorithm is useful for sampling the space of reconciliations, but not
for exhaustive enumeration of that space. Therefore, in the next section, an
algorithm for enumeration is introduced.

4 Exhaustive Exploration of the Whole Space Ψ(G, S)

We first define combinatorial operators used to explore the space of all possi-
ble reconciliations, and then give an algorithm, based on these operators, that
explores exhaustively this space.

4.1 Space Exploration Operators

We present in this section a type of operator, called Nearest Mapping Change
(NMC), acting on a reconciliation between a gene tree G and a species tree
S. This movement is similar to the ones described in [11]. We show that this
operator is sufficient to explore the space of all possible reconciliations.

Definition 2. Let α : V (G) → V (S) ∪ E(S) be a given reconciliation between
G and S, and u a vertex of V (G) \L(G) such that u �= r (G). Let ĉ, c, c1, and c2

respectively denote α(p(u)), α(u), α(u1), and α(u2).

1. An upward NMC (uNMC) can be applied to u if c <S ĉ, and if ĉ ∈ V (S) and
c ∈ E(S), then D(ĉ, c) > 0. It changes α(u) into its ancestor cell f(α(u)) of
A(u).

Algorithms for Exploring the Space 7

1

2

3

4
5

C1

D1

(a)

1

2

3

4
5

C1

D1

(b)

1

2

3

4
5

C1

D1

(c)

Fig. 2. (a) A section of the reconciliation depicted in figure 1. Here, the mapping
of node 2 forbids to move up node 3. (b) The node 2 changes from a speciation to a
duplication by moving it up. (c) Then, node 3 can be moved up and still is a duplication.

2. A downward NMC (dNMC) can be applied to u if c1 <S c, M(u) <S c, and
if c1 ∈ V (S) and c ∈ E(S), then D(c, c1) > 0 (idem for c2). It changes α(u)
into its descendant cell d(α(u)) of A(u).

It follows immediately from the definition of NMC operators that, given α ∈
Ψ(G, S), applying an NMC operator to a vertex u of G results in a reconciliation
α′ between G and S. More precisely, it can induce the following changes in the
evolutionary scenario for the gene family (see Figure 2).

– Changing a speciation by a duplication (uNMC, α(u) = M(u)).
– Changing a duplication by a speciation (dNMC, α′(u) = M(u)).
– Moving a duplication upward (uNMC, α(u) �= M(u)).
– Moving a duplication downward (dNMC, α′(u) �= M(u)).

For u ∈ V (G), and c, c′ ∈ A(u), du

(
c, c′

)
is the number of cells of A(u) between

c and c′, where du

(
c, c′

)
= 0 if and only if c = c′. For two reconciliations α and

α′, DNMC(α, α′) =
∑

u∈V (G) du

(
α(u), α′(u)

)
. We call DNMC(α, α′) the NMC

distance between α and α′. A valid (according to Definition 2) NMC application
to α can be encoded by a pair (u, c), where u ∈ V (G) is the node being moved
and c ∈ V (S)∪E(S) is its new mapping. We denote by NMC(α) the set of such
pairs for a given reconciliation α.

Theorem 2. Let α and α′ two reconciliations of Ψ(G, S). There exists a se-
quence of DNMC(α, α′) NMC that transforms α into α′. No shorter sequence of
NMC can transform α into α′.

We denote by GNMC(G, S) the graph with vertex set Ψ(G, S) and where two
reconciliations are linked by an edge if they differ by a single NMC. Let αmin be
the unique reconciliation where, for each vertex u of G, αmin(u) is the unique cell
of A(u) that has no descendant in A(u), and αmax be the unique reconciliation
where, for each vertex u of G, αmax(u) is the unique cell of A(u) that has no
ancestor in A(u). The following results shows that although Ψ(G, S) can have
an exponential size, NMC operators are sufficient to define a structure on this
space of polynomial diameter.

Corollary 1. The diameter of GNMC(G, S) is equal to DNMC(αmin, αmax) and
is in O(nm).

8 J.-P. Doyon, C. Chauve, and S. Hamel

Finally, as our NMC operators are intended to explore the space of reconciliations
between a gene tree and a species tree, we address now the issue of updating the
classical combinatorial criteria used to evaluate a reconciliation: the following
observation implies that they can be easily updated in constant time.

Property 1. Let α and α′ be two reconciliations of Ψ(G, S) such that α′ can
be obtained from α by a single NMC. Then, |dup(α) − dup(α′)| ∈ {0, 1} and
|los(α) − los(α′)| ∈ {1, 2}.

4.2 Algorithm for the Exhaustive Exploration

We present in this section a simple algorithm, based on the NMC operator,
that computes the set of all possible reconciliations between a gene tree G (with
|V (G)| = m) and a species tree S (with |V (S)| = n) in time Θ(|Ψ(G, S)|)
(see Theorem 3), which gives a CAT (Constant Amortized Time) algorithm to
generate Ψ(G, S).

For a node u ∈ V (G), let id(u) be the number of nodes that precede u accord-
ing to the prefix traversal of G, where the left child u1 of a node u ∈ V (G)\L(G)
is visited before the right child u2. Let TNMC(G, S) be the tree defined as follows
(see Figure 3):

– The root is the reconciliation αmin and its children are the reconciliations
that can be obtained from αmin by applying a single uNMC from
NMC(αmin),

– Given a reconciliation α, that differs from its parent by an uNMC (ui, c), its
children are the reconciliations that can be obtained from α by applying a
single uNMC (uj , c

′) from NMC(α) such that id(uj) ≥ id(ui).

1

2

3

4
5

C1

D1

1

2

3

4

5
C1

D1

1

2

3

4 5 C1

D1

1

2

3

4
5

C1

D1

Fig. 3. The subtree of TNMC(G, S) rooted at αmin for the trees G and S depicted in
Figure 1. αmin and its children respectively are at the top and bottom of the figure.
For each child, the node that has been moved upward is in boldface.

Algorithms for Exploring the Space 9

Proposition 3. TNMC(G, S) is a spanning tree of GNMC(G, S).

The exhaustive exploration algorithm of the whole space Ψ(G, S) is based on
the tree TNMC(G, S). It follows immediately from the definition of TNMC(G, S)
that the main tasks for a given reconciliation α is 1) to know the list of allowed
uNMC operators that can be applied to obtain the children of α, and 2) to
keep in order its nodes according to the increasing value of their indexes id.
We denote by P (α) this ordered list. The key to achieve this efficiently is the
Property 2 below, that follows easily from the definitions of NMC operators and
of TNMC(G, S).

Property 2. Let α and α′ be two reconciliations of Ψ(G, S) such that α′ is a
child of α in TNMC(G, S), and differs from α by an uNMC (u, c). Then P (α)
and P (α′) differ by at most three uNMC, that involve u, u1 and u2.

Based on this property, we describe below an algorithm that performs a prefix
traversal of TNMC(G, S), where the children of a reconciliation α are visited
according to the ordered list P (α), in such a way that each time an edge from
α to a reconciliation α′ is followed, P (α) is updated into P (α′). To perform this
update in constant time, we encode P using two disjoint lists P� and Pr and two
cursors u� and ur on these lists, in such a way that a node u is in P if and only
if u is in the sublist of P� (or Pr) that starts at u� (resp. ur).

Algorithm 1.2 below describes the general recursive function, where the main
tasks for the current reconciliaton α are i) select the next node u ∈ P (α) with
the smallest id from the sublists of P� or Pr (lines 4,5); ii) define the child
reconciliation α′ by moving u upward (line 6); iii) define P (α′) from P (α) by
updating P�, Pr, u�, and ur (lines 7-12). The function is first called with α =
αmin, P� = NMC(α), Pr = ∅, u� = first(P�), and ur = end(Pr), that are

Algorithm 1.2. Exhaustive exploration algorithm of the space Ψ(G, S)
1: RecurExplore (α, u�, ur)
2: Let u′

� ← u� and u′
r ← ur

3: while u′
� �= end(P�) or u′

r �= end(Pr) do
4: if u′

� = end(P�) then u← u′
r

5: else if u′
r = end(Pr) or id(u′

�) < id(u′
r) then u← u′

�, else u← u′
r

6: α′(u)← f(α(u))
7: if u1 /∈ P� and u = u′

� then insert u1 in P� after u′
�

8: else if u1 /∈ P� and u = u′
r then insert u1 in P� before u′

�, u′
� ← u1

9: if u2 /∈ P� ∪ Pr and u = u′
r then insert u2 in Pr after u′

r

10: else if u2 /∈ P� ∪ Pr and u = u′
� then insert u2 in Pr before u′

r, u′
r ← u2

11: if (u, f(α′(u))) /∈ NMC(α′) and u = u′
� then u′

� ← succ(u′
�, P�)

12: if (u, f(α′(u))) /∈ NMC(α′) and u = u′
r then u′

r ← succ(u′
r, Pr)

13: RecurExplore (α′, u′
�, u

′
r)

14: Retrieve old values of P�, Pr, u
′
�, u

′
r by performing the inverse operations of

lines 7 to 12.
15: α(u)← d(α′(u)) {Backtrack}
16: if u = u′

� then u′
� ← succ(u′

�, P�) else u′
r ← succ(u′

r, Pr)

10 J.-P. Doyon, C. Chauve, and S. Hamel

computed during a preprocessing phase. Here, first() and end() respectively
represents the first cursor of the considered list and a null one located at the end
of the list. For a node u ∈ V (G) and a cell c ∈ A(u), recall that f(c) and d(c)
respectively are its ancestor and descendant cells in A(u).

Theorem 3. Algorithm 1.2 visits all reconciliations of Ψ(G, S). Given αmin,
and P� = NMC(αmin), it can be implemented to run in time Θ(

∣∣Ψ(G, S)
∣∣) and

space O(nm).

Together with Property 1, that implies that updating the number of duplications
and/or losses after a single NMC can be done in constant time, this algorithm
allows to compute efficiently the exact distribution of the duplication, loss and
mutation costs in optimal time Θ(|Ψ(G, S)|) (see Section 5).

5 Experimental Results

We considered the phylogenetic tree of 12 Drosophila species and the branch
lengths, and gene gain/loss rates that are given in [13, Figure 1]. We generated
1000 synthetic gene trees according to the birth-and-death process (with a single
ancestral gene) along this species tree, and removed multiple copies of each gene
tree. This resulted in 249 unique gene trees having from 6 to 22 leaves (Figure 4).
Figure 5 describes the cardinality and diameter of Ψ(G, S) for these 249 gene
trees.

For each of the 249 unique gene trees, we used the algorithm 1.2 to explore the
whole space Ψ(G, S) focusing on the duplication cost (for the loss and mutation
criteria, the results are similar). For the duplication criterion, 237 gene trees have
a unique global minimum, and 12 have two. In each of these 12 cases, the NMC
distance between the two global minimums is one. Over all the 249 gene trees,
the LCA reconciliation αmin, that is a global minimum, is either identical or, in
the worst case, at a distance of a single NMC to the true evolutionary scenario
induced by the birth-and-death and noted αreal. However, it is important to
point out that this is probably due to the low duplication and loss rates given
in [13].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6 8 10 12 14 16 18 20 22

N
um

be
r

of
 g

en
e

tr
ee

s

Tree Size

Fig. 4. Distribution of the 249 gene trees according to their number of leaves

Algorithms for Exploring the Space 11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

102 103 104 105 106 107 108 109

N
um

be
r

of
 g

en
e

tr
ee

s

Space Size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

N
um

be
r

of
 g

en
e

tr
ee

s

Space Diameter

Fig. 5. Left. Distribution of the number of gene trees (y axis) according to the rec-
onciliation space size (x axis). A gene tree G is counted in the bar 10i iff 10i−1 ≤∣∣Ψ(G, S)

∣∣ < 10i. Right. Distribution of the 249 gene trees according to the diameter of
Ψ(G, S).

For a reconciliation α ∈ Ψ(G, S), let dcost(α) = dup(α) − dup(α∗), where
α∗ is a global minimum, according to the duplication cost, that minimizes
DNMC(α, α∗). We denote by N(k) the number of reconciliations α ∈ Ψ(G, S)
such that dcost(α) = k, for a given k ∈ N. Figure 6 shows that, on average over
all gene trees, N(k) is proportional to k from k = 0 to k = 13 and inversely
proportional from k = 13 to k = 18. This can be explained by the following
facts: the maximum value of dcost is equal to the number of internal nodes u of
G that can be mapped on M(u), and the average number of such nodes is 13.
All this suggests that, for a given gene tree, N(k) is maximized at this maximum
value of dcost = k.

We analyzed the relationship between the NMC and cost distances using
the average value of DNMC(α, α∗) over all gene trees G and all reconciliations
α ∈ Ψ(G, S) such that dcost(α) = k, for a given k ∈ N. We also computed the
number of nodes u ∈ V (G) such that α(u) �= αreal(u). According to Figure 7,
we observe that the cost distance of a reconciliation α is proportional both to

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16 18

k

N
(k

)

Fig. 6. Over all 249 gene trees, average distribution of the number N(k) (y axis) of
reconciliations α such that dcost(α) = dup(α)− dup(α∗) = k, for k ∈ N (x axis). α∗ is
a global minimum that minimizes the NMC distance DNMC(α, α∗).

12 J.-P. Doyon, C. Chauve, and S. Hamel

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18

k

D
N

M
C

(α
,α

∗)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18

k

d
re

a
l

Fig. 7. Left: over all gene trees G, average value of DNMC(α, α∗) (y axis) for all
reconciliations α ∈ Ψ(G, S) such that dcost(α) = k, for a given k ∈ N (x axis). Right:
the same distribution with the real distance dreal, that is the number of nodes u of G
such that α(u) �= αreal(u).

the NMC distance with the closest optimal reconciliation α∗ and to how much
α differs from the real reconciliation αreal.

6 Conclusion

We described in this work several algorithms related to exploring the space of
all reconciliations between a gene tree and a species tree. From an algorithmic
point of view, our exhaustive exploration algorithm is optimal as it requires an
(amortized) constant time between successive reconciliations. Our experiments
on a realistic simulated dataset with low duplication/loss rates (we will consider
simulated datasets with higher duplication/loss rates in the full version of this
paper) show that even in this case the number of reconciliations can be very
large, but that for all three combinatorial criterion considered there are relatively
few optimal or near-optimal reconciliations, always located close (in terms of
NMC distance) to the LCA reconciliation. It is known that for the loss and
mutation costs, this LCA reconciliation is the only possible minimum. However,
for the duplication cost (as well as for the maximum likelihood cost), it can
happen that several optimal reconciliations exist and our exhaustive exploration
algorithm was able to locate them. This motivates our current work to modify our
algorithm to handle dNMC operators in order to explore efficiently alternative
but close evolutionary scenarios (in terms of NMC) of a given reconciliation
(work in progress). Our algorithm can already be applied to this task when the
starting reconciliation is αmin by visiting only the reconciliations that are at
a fixed distance (in terms of NMC) from αmin. Natural generalizations of the
algorithms we described in the present work include handling either non-binary
gene or species trees [3,18] (or both) and attacking the more difficult problem of
multiple gene duplications [7]. Moreover, we are now developing our exhaustive
exploration algorithm for the maximum likelihood cost.

Algorithms for Exploring the Space 13

Acknowledgements. Cédric Chauve akcnowledges the support of NSERC
through an Individual Discovery Grant and of Simon Fraser University through
a Startup Grant.

References

1. Arvestad, L., Berglund, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruc-
tion and orthology analysis based on an integrated model for duplications and
sequence evolution. In: RECOMB 2004, pp. 326–335 (2004)

2. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species
tree under the duplication cost model. Theoret. Comput. Sci. 347, 36–53 (2005)

3. Chang, W.-C., Eulenstein, O.: Reconciling gene trees with apparent polytomies.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244.
Springer, Heidelberg (2006)

4. Chauve, C., Doyon, J.-P., El-Mabrouk, N.: Gene family evolution by duplication,
speciation and loss. J. Comput. Biol. (to appear, 2008)

5. Denise, A., Zimmermann, P.: Uniform random generation of decomposable struc-
tures using floating-point arithmetic. Theoret. Comput. Sci. 218, 233–248 (1999)

6. Doyon, J.-P., Chauve, C., Hamel, S.: Algorithms for exploring the space of gene
tree/species tree reconciliations. IRO Technical Report # 1323 (2008)

7. Fellows, M.R., Hallett, M.T., Stege, U.: On the multiple gene duplication problem.
In: Chwa, K.-Y., H. Ibarra, O. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 347–356.
Springer, Heidelberg (1998)

8. Fitch, W.M.: Distinguishing homologous from analogous proteins. Syst. Zool. 19,
99–113 (1970)

9. Fitch, W.M.: Homology - a personal view on some of the problems. Trends
Genet. 16, 227–231 (2000)

10. Goodman, M., Czelusniak, J., Moore, G.W., Herrera, R.A., Matsuda, G.: Fitting
the gene lineage into its species lineage, a parsimony strategy illustrated by clado-
grams constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

11. Górecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoret.
Comput. Sci. 359, 378–399 (2006)

12. Graur, D., Li, W.-H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer
Associates, Sunderland (1999)

13. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 Drosophilia
genomes. PLoS Genet. 3, e197 (2007)

14. Jensen, R.: Orthologs and paralogs - we need to get it right. In: Genome Biology,
2:interactions1002.1–interactions1002.3 (2001)

15. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30,
729–752 (2001)

16. Ma, J., Ratan, A., Zhang, L., Miller, W., Haussler, D.: A heuristic algorithm for
reconstructing ancestral gene orders with duplications. In: Tesler, G., Durand,
D. (eds.) RECMOB-CG 2007. LNCS (LNBI), vol. 4751, pp. 122–135. Springer,
Heidelberg (2007)

17. Page, R.D.: Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994)

18. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary
species tree. In: CSB 2007 pp. 441–452 (2007)

Limitations of Pseudogenes in Identifying Gene

Losses

James C. Costello1,2, Mira V. Han1,2, and Matthew W. Hahn1,2

1 School of Informatics, Indiana University, Bloomington, IN, 47408, USA
2 Department of Biology, Indiana University, Bloomington, IN, 47405, USA

Abstract. The loss of previously established genes has been proposed
as a major force in evolutionary change. While the sequencing of many
new species offers the opportunity to identify cases of gene loss, the best
method to do this with is unclear. A number of methods to identify gene
losses rely on the presence of a pseudogene for each loss. If genes are
completely or largely removed from the genome, however, such methods
will fail to identify these cases. As the fate of gene losses is still unclear,
we attempt to identify losses using nine Drosophila genomes and deter-
mine whether these lost genes leave behind pseudogenes in the lineage
leading to D. melanogaster. We were able to find 109 cases of unambigu-
ous gene loss. Of these, a maximum of 18 have identifiable pseudogenes,
while the other 91 do not. We were also able to identify a large number
of previously unannotated genes in the D. melanogaster genome, most
of which also had evidence for transcription. Though our results suggest
that pseudogene-based methods for finding gene losses will miss a large
proportion of these events, we discuss the dependence of these conclu-
sions on the divergence times among the species considered.

1 Introduction

Comparative genomic approaches to find evolutionarily important genes have
traditionally involved comparisons between orthologous protein-coding se-
quences. Such comparisons can identify rapidly evolving genes whose high rate
of evolution may indicate adaptive natural selection (e.g. ref. [1]). Recent exten-
sions to this approach have further considered non-coding sequences and have
uncovered several regions involved in human adaptation [2,3]. The availability of
high-quality genome sequences has also allowed researchers to discover genes lost
during evolution, where sequences are not necessarily shared between species.
These changes may also have played important roles in adaptive evolution.

Gene loss is a ubiquitous phenomenon across all sequenced genomes, both
eukaryotic and prokaryotic [4,5,6]. Gene loss generally refers to the loss of a
functional gene present in a genome, rather than simply the creation of new
pseudogenes by gene duplication. In humans, gene loss has been proposed to
be an especially important source of adaptive change under the “less is more”
hypothesis [7,8]. A number of well-studied examples of human-specific losses are
known, including CMAH [9], ELN [10], Siglec-13 [11], and MYH16 [12]. In ad-
dition to these individual cases, several groups have conducted computational

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 14–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Limitations of Pseudogenes in Identifying Gene Losses 15

searches to identify human- or primate-specific gene losses via comparative ge-
nomics [13,14,15]. These searches have collectively discovered over a hundred
new gene losses in humans. Though the methods introduced in these papers dif-
fer in their details, they have one important thing in common: they all initialize
their search for gene losses using sequences currently present in the focal (i.e.
human) genome. This means that they use either previously annotated pseudo-
genes [14], annotate their own pseudogenes [15], or require there to be an EST
for the pseudogene [13]. In each case, a pseudogene is defined as a genomic fea-
ture in the focal genome with homology to a functional gene in other species,
but that has lost its ability to code for a protein. Any gene loss resulting from
a complete or near-complete deletion of a gene, or any sequence that has been
deleted since becoming a pseudogene is therefore missed.

It is currently unknown how many gene losses have gone undiscovered because
of the limitations of these algorithms. There is a bias towards deletions in the
human genome [16], which may result in the loss of many sequences no longer
maintained by selection. Deletion bias is even stronger in Drosophila [17], which
may cause methods requiring pseudogene sequences to have extremely high false
negative rates when searching for gene losses. However, the publication of 12
Drosophila genomes [18,19] provides a novel comparative genomic dataset that
offers the opportunity to identify recent gene losses with unprecedented reso-
lution. Therefore, to determine the extent to which algorithms dependent on
pseudogenes may miss gene losses, we conducted an extensive analysis of appar-
ent losses among the genomes within the Sophophora sub-genus of Drosophila
(which includes the model organism, D. melanogaster). We were able to identify
a large number of gene losses along the lineage leading to D. melanogaster, only
a small fraction of which are present as pseudogenes. Additionally, we examined
two D. melanogaster genome assemblies and annotations in order to highlight
the effect of genome annotation on identifying gene losses. Our results suggest
that alternative algorithms may be needed to uncover the full extent of gene loss
across species.

2 Data

2.1 Drosophila Genomes

The sequences of 12 Drosophila genomes were recently used to compare the com-
plement of protein-coding genes among species [18,19]. In 11 of the 12 species
(all except D. melanogaster) de novo gene prediction was conducted to estab-
lish the set of genes in each genome, including in the previously sequenced D.
pseudoobscura [20]. We used both the reconciled set of predicted genes from the
newly sequenced species in the Sophophora sub-genus and the assembly and an-
notations from D. melanogaster v4.3 to initially identify gene losses; these are
the same set of genes used for these genomes in the main analyses of ref. [18]
and ref. [19]. The genomes in the Sophophora sub-genus are: D. melanogaster
(Dmel), D. simulans (Dsim), D. sechellia (Dsec), D. yakuba (Dyak), D. erecta
(Dere), D. ananassae (Dana), D. pseudoobscura (Dpse), D. persimilis (Dper),

16 J.C. Costello, M.V. Han, and M.W. Hahn

and D. willistoni (Dwil). The additional 3 sequenced Drosophila genomes are D.
grimshawi (Dgri), D.virilis (Dvir), and D. mojavensis (Dmoj).

2.2 Defining Gene Families

Gene families were defined using the Fuzzy Reciprocal BLAST (FRB) method
introduced in ref. [19]. FRB compares all proteins in a reciprocal manner between

Fig. 1. At the top of the figure is the phylogeny for the sub-genus Sophophora. The
letters on the phylogeny represent the timing of candidate gene losses. The table below
the phylogeny shows the breakdown of all the 247 candidate gene losses considered.
A “1” indicates that at least one gene is present in a given gene family and a “0”
indicates the absence of a gene defined for a given gene family. The underlined values
represent the species from which one gene per gene family was used as a query to the
D. melanogaster genome. In the case where two species are sister to D. melanogaster,
genes from the better assembled genomes (Dpse, Dyak, Dsim) were taken if possible.
The left-most column corresponds to the letters on the phylogeny. The right-most
column shows the number of candidates in each category of gene loss, as well as the
number of complete losses and pseudogenes in parentheses; displayed as (complete
losses|pseudogenes). In total, there are 109 identified gene losses (91 + 18).

Limitations of Pseudogenes in Identifying Gene Losses 17

all pairs of genomes using BLASTp. Instead of using only the reciprocal best hit,
FRB uses a rank-based method to identify potential homologs of each protein.
The genes are then clustered based on their reciprocal similarity scores so that
the resulting families are maximally connected and disjoint from one another.
The method results in families that include both orthologs and paralogs, but
has a propensity to break down families into 1:1:1...1 matches across species.
This aspect of FRB allows us to easily identify homologs of candidate gene
losses. Among the sequenced Drosophila genomes, FRB identified 11,434 families
present in the most recent common ancestor of all 12 species, comprising a total
of 148,326 genes. By comparing the number of genes within a family across
species we were able to identify genes that appear to have been lost along each
lineage as shown in Figure 1. See ref. [21] for further details.

2.3 Drosophila Sequences

To verify gene losses in D. melanogaster we searched against both the assembly
and annotation of this genome used in the initial definition of gene families as well
as an updated version. Both v4.3 and v5.3 D. melanogaster sequences were down-
loaded from the FlyBase ftp website.1 Coordinates for D. melanogaster sequences
(coding sequences and pseudogenes) were extracted from the fasta headers.

D. melanogaster EST sequences were downloaded from the Berkeley
Drosophila Genome Project (BDGP) website.2 Gene models of the eight non-
melanogaster Sophophora species were defined by the GLEANR consensus set
of the Drosophila Genome Sequencing and Analysis Consortium [19].

3 Results

3.1 Gene Losses

We initially identified potential gene losses along the lineage leading to D.
melanogaster since the split with D. willistoni (Figure 1) by using fuzzy re-
ciprocal BLAST [21]. Because annotated D. melanogaster pseudogenes were not
used as input to FRB, this method calls genes as absent whether or not a pseu-
dogene can be found. Here we consider only those cases of potential gene losses
where a single loss has occurred. This means that the gene family containing
the lost gene is required to have at least one intact homolog present in all of the
sister branches to the lineage of interest, including at least one homolog in Dmoj,
Dvir, or Dgri. For example, for a gene to be considered lost in the melanogaster
group (Dmel, Dsec, Dsim, Dyak, Dere, Dana), there must be at least one gene
from the same family present in the obscura group (Dpse, Dper), one in the
willistoni group (Dwil), and one among the Drosophila sub-genus species Dmoj,
Dvir, or Dgri (case “D” in Figure 1). All cases involving the parallel loss of genes
were therefore not considered. However, because of the low sequence coverage

1 ftp://www.flybase.net/
2 http://www.fruitfly.org/sequence/dlcDNA.shtml

18 J.C. Costello, M.V. Han, and M.W. Hahn

of several of the Drosophila genomes, we used the annotations of closely related
sister species to eliminate apparent parallel losses that were due to missed pre-
dictions in genomes with low sequence coverage. Therefore the following species
were treated as individual lineages: Dsim|Dsec, Dyak|Dere, and Dpse|Dper. Fig-
ure 1 shows the counts of candidate gene losses in relation to D. melanogaster.
In total, 247 gene families from the FRB results met the criteria listed above.

For each of the 247 gene families, one gene was selected as a query sequence
and used for further analysis. The gene sequence selected was taken from the
most closely related species that contained an intact protein-coding gene homol-
ogous to the lost gene. Figure 1 identifies the species from which query sequences
were taken for each case of gene loss. Since gene families are defined only for
protein-coding genes, the coding sequence for a given query gene was used in all
subsequent analyses.

As a first step in confirming gene losses along the D. melanogaster lineage,
the coding sequences of the 247 query genes were searched against the D.
melanogaster genome using BLASTn. The results from this search constitute
the first major division within the candidate gene losses. Of the starting 247
coding sequences, 133 have hits to the v4.3 D. melanogaster genome meeting
our BLAST criteria (e-value < 10−6, percent identity > 80%, and hit length
> 40), while 114 do not have a significant hit (Figure 2).

Fig. 2. Results of the gene loss analysis. The boxes shaded with horizontal stripes
represent potential gene losses through either pseudogenization or complete removal of
a gene from the genome. The white boxes represent genes that were not annotated or
improperly annotated in v4.3 of the D. melanogaster genome assembly and annotation,
but that are called as potential new genes in our analyses. Many of the genes missed
in the v4.3 genome are in fact called gene models in the updated v5.3.

Limitations of Pseudogenes in Identifying Gene Losses 19

Query genes that do not hit the D. melanogaster genome. The 114 query
genes not hitting the v4.3 D. melanogaster genome were first checked against
the v5.3 genome assembly and annotation to determine if any of these potential
gene losses are simply due to gaps in the v4.3 assembly. The 114 query sequences
were searched against the v5.3 D. melanogaster genome using BLASTn with the
same criteria as before. Interestingly, 23 query genes hit very strongly to genes
predicted in the v5.3 genome. Of these 23, 16 mapped to heterochromatin and
7 mapped to euchromatin. The 7 hits to euchromatin are clear examples of gaps
in the assembly that have been closed from v4.3 to v5.3 of the D. melanogaster
genome. The 16 new genes found in heterochromatin are due in large part to
recent efforts towards sequencing heterochromatic regions of the D. melanogaster
genome [22,23].

As an additional verification that these 23 query genes do map to the D.
melanogaster genome and are not gene losses, these sequences were searched
against the D. melanogaster EST library using BLASTn with an e-value cutoff
of 10−6. Of these, 22 of the 23 query sequences have matches to ESTs, suggesting
that they are true genes missed in previous assemblies. The one query sequence
that did not map to an EST is dpse GLEANR 9567, which hits a predicted gene
located on an unmapped contig of the D. melanogaster genome.

The 91 query genes that do not have a hit to the D. melanogaster genome
(both v4.3 and v5.3) meeting our requirements are likely losses of genes that were
completely removed from the D. melanogaster genome. An alternative explana-
tion for not finding these 91 genes is that any remaining remnants of the pseu-
dogenes have been degraded beyond the detectable limits of the given BLAST
parameters. To demonstrate that this is not the case, we ignored the percent
identity and sequence length cutoffs and also lowered the BLASTn e-value cut-
off from 10−6 to 10−3. We did not recover a single additional hit to the v4.3
D. melanogaster genome using these criteria. A third potential reason for not
being able to find these 91 proteins is that the coding regions lie in heterochro-
matic DNA that was not assembled into either the v4.3 or v5.3 D. melanogaster
genome. Although this is unlikely given the progress that has been made on
recent versions of the D. melanogaster genome where great efforts have been
taken to fully sequence the heterochromatic regions [22]. We wanted to verify
that this was not the case. As mentioned above, the 91 query genes (being a
subset of the total 114) were searched against the v5.3 D. melanogaster genome
with no hits to the heterochromatin; however, potential heterochromatic regions
may still exist. Because genes located in heterochromatic regions are assumed
to be transcribed, we reasoned that evidence for transcribed sequences could
be used to find unassembled genes. In other words, a match to an unmapped
EST would suggest a transcription unit that is not assembled into the current
D. melanogaster genome release. We carried out this check by searching the set
of 91 query genes against the D. melanogaster EST library with a BLASTn e-
value cutoff of 10−6, but no reliable hits were found. These 91 genes therefore
represent good cases of gene loss with no identifiable pseudogenes.

20 J.C. Costello, M.V. Han, and M.W. Hahn

Query genes that hit the D. melanogaster genome. The 133 sequences
that hit the D. melanogaster genome were analyzed to determine whether they
matched an annotated coding sequence. The physical chromosome coordinates
from the v4.3 D. melanogaster BLAST results were checked against the phys-
ical coordinates of all D. melanogaster coding sequences, which resulted in 47
query sequences overlapping at least one D. melanogaster coding sequence and
86 not overlapping a D. melanogaster coding sequence. These two sets are further
explored in the next two sections.

Query genes that do not overlap a D. melanogaster coding sequence
The set of 86 non-melanogaster query genes that hit part of the D. melanogaster
genome but do not overlap with any D. melanogaster coding sequences were
first tested against the v5.3 D. melanogaster genome to identify missed genes
due to poor genome annotation. Coding sequences in v5.3 D. melanogaster were
searched with the 86 query genes using BLASTn (e-value < 10−6, percent iden-
tity > 80%, and hit length > 40). Of the 86 query sequences, 57 unambiguously
mapped to a putative coding sequence in D. melanogaster (v5.3). All of these
genes represent annotations that were added from v4.3 to v5.3. To find evidence
of gene expression for the 57 query genes we searched the EST sequence database
using a BLASTn e-value cutoff of 10−6, resulting in 50 sequences that had EST
evidence and only 7 sequences that did not.

Improved annotations can explain 57 of the 86 query sequences, but does not
explain the remaining 29 hits to the genome. These 29 cases are suggestive of
either pseudogenes or missed annotations (i.e. new genes not included in v5.3).
To test whether the regions hit by these 29 genes have evidence for transcription,
we queried the non-melanogaster coding sequences against the D. melanogaster
EST library. We found good matches to ESTs for 21 genes and no matches for
the remaining 8 genes.

To evaluate the potential gene structure of these 29 regions in the D.
melanogaster genome, we performed gene predictions using GeneWise [24]. We
used translated query peptide sequences compared with two different lengths
of D. melanogaster genomic regions (± 2,000 bases or ± 5,000 bases from the
BLAST hit) as input to GeneWise and used the output peptide of longest length
as our gene model. Out of the 29 cases, 25 regions were identified as novel genes
that are missing even in the v5.3 annotation of D. melanogaster. These 25 re-
gions of the D. melanogaster genome have valid exon structures that align across
the whole query gene without any nonsense or frameshift mutations. Eighteen
of these newly predicted genes have independent supporting evidence, such as a
perfect match to a third party annotated D. melanogaster protein in the non-
redundant database of NCBI. Of these, 17 also overlap with new annotations
predicted in ref. [18] and have EST evidence.

Finally, the four remaining regions have predicted exons that align only par-
tially to the query gene or have nonsense/frameshift mutations, and are identified
as pseudogenes. None of these four pseudogenes have any EST evidence.

Limitations of Pseudogenes in Identifying Gene Losses 21

Query genes that hit a D. melanogaster coding sequence. The set of 47
genes overlapping at least one D. melanogaster coding sequence suggests either
misannotation or misclustering of the input genes, or requires some other expla-
nation for their high similarity to genes present in D. melanogaster. To determine
which of these scenarios may have occurred, we conducted further analyses.

In order to verify whether the D. melanogaster gene matching the query se-
quence is indeed a protein homolog, we again used GeneWise to predict exons in
the genomic region using the query protein. We then used BLASTp to query the
predicted peptide against the v4.3 proteins. We found 12 cases where the pep-
tide matches the genomic nucleotide sequence but does not match an annotated
protein in v4.3. Of these, 4 cases appear to be novel genes that overlap already
annotated proteins. Because they are overlapping genes present in the current
annotation we found significant nucleotide similarity, but no protein similarity.
EST evidence was found for all four novel predictions. Another 7 cases match the
nucleotide sequence of predicted genes in v4.3 that have since been updated with
new predictions in v5.3. In all of these cases, the v5.3 predicted protein is in a
different reading frame than the previously annotated gene, and this new protein
has significant similarity to the peptide predicted by GeneWise. Our predicted
peptides did not have significant protein similarity to the v4.3 annotations. The
one remaining predicted peptide does not have a hit to v5.3 and only partially
aligns to fragments of the query gene, and therefore is identified as a pseudogene.

The remaining 35 cases do have a matching D. melanogaster protein in v4.3,
but still fail to cluster together in the same family. We found that 21 of the 35
peptides only partially match the D. melanogaster protein in the far 5’ or 3’
ends of the gene. For all of these cases the query gene is much shorter than the
D. melanogaster gene it is aligned to. For a few cases the query gene matches
a short first exon of the D.melanogaster protein that resides more than 10,000
bases upstream of the second exon. We suspect that these are misannotations
in the other Drosophila species, where the de novo gene prediction program has
predicted short exons at either end of long genes as separate genes. It is possible
that a gene fusion event has occurred along the D. melanogaster lineage [25],
though these generally do not occur between initially adjacent genes.

In 1 of the 35 cases, the gene family of the matching D. melanogaster gene
appears to have one extra member, meaning that the matching D.melanogaster
gene should have been placed with the query gene in order to explain the gene
loss. This is the only case that appears to represent an apparent loss explained
by the misclustering of gene families by FRB. For the remaining 13 cases (of the
35) there are one or more genes in the non-melanogaster species that are already
clustered with the matching D. melanogaster gene, and the alignment among
those genes is better than the alignment between the query gene and the D.
melanogaster gene. These cases represent ancient duplications predating the base
of the Drosophila tree, for which a gene is lost in one of the paralogous lineages
and the query sequence is hitting the other paralog. These represent gene losses,
though the high similarity to intact paralogs make it hard to unambiguously say
whether a pseudogene is present in the D. melanogaster genome.

22 J.C. Costello, M.V. Han, and M.W. Hahn

4 Discussion

Identifying cases where previously functional genes maintained by natural selec-
tion are lost is one of the novel and important challenges posed by comparative
genomics. Though a large number of pseudogenes have been identified in many
genomes (e.g. ref. [26]), the vast majority of pseudogenes identified are dupli-
cated genes that were never maintained by selection. A number of new methods
have been used to find true gene losses, but they require the remnants of lost
genes to be identified in the target genome (e.g. refs. [13,14,15]). Alternatively,
true gene losses can be found by identifying annotated genes in other species that
do not have significant similarity to genes in the target genome [27,21]. Though
this method does not require the presence of pseudogenes, it may misidentify
gene losses when genes present in the target genome are not clustered with their
homologous genes or when there are gaps in the genome sequence.

Here we have used this latter method to determine the utility of algorithms
that require the presence of pseudogenes to identify gene losses. While we have
not run any of these algorithms on the Drosophila dataset used here, by finding
gene losses that do not have pseudogenes we are able to estimate the maximum
number of genes that could be identified by such methods. By closely examining
a number of cases, we are also able to extend previous results to judge the
accuracy of methods based only on the lack of significantly similar genes (i.e.
ref. [21]).

We initially identified 247 candidate gene losses along the lineage leading to
D. melanogaster. Note that because we ignored parallel gene losses, these do not
represent the full set of losses that have occurred along this lineage since the
split with D. willistoni. It does mean, however, that we are unambiguously able
to assign losses to a specific branch of the tree (Figure 1).

Of the 247 genes we initially identified as candidate gene losses, 109 appear
to be unambiguous losses along the lineage leading to D. melanogaster. The vast
majority of candidates that do not appear to be losses are instead genes that
were not annotated in earlier versions of the D. melanogaster genome. Some
of these were not annotated because of gaps in the genome assembly (n = 7),
unsequenced heterochromatic regions (n = 16), or were simply not found by
previous gene-finding algorithms (n = 86). The large majority of the annotation
updates account for the 124 gene loss candidates between the Dsim|Dsec and
Dmel lineages (Figure 1, row A), thus artificially inflating potential gene losses
between sister species. We also found a large number of losses on branches D and
E relative to C (Figure 1), a result consistent with previous estimates of loss rates
along these lineages [21]. The v4.3 D. melanogaster genome, though out of date,
still represents one of the most high quality assemblies and annotations available,
particularly in a metazoan genome. These annotation updates illustrate the large
influence that genome assembly and annotation can have on identifying gene
losses. Additionally, that this “finished” genome can be missing so many gene
annotations attests to the difficulties in identifying eukaryotic protein-coding
genes in large genomes. In fact, 29 of the newly predicted proteins from this
study are still not included in the v5.3 D. melanogaster annotation.

Limitations of Pseudogenes in Identifying Gene Losses 23

We were only able to identify 5 pseudogenes out of the 109 unambiguous gene
losses, though for 13 cases this has not been determined definitively. This result
implies that methods depending on the presence of pseudogenes to identify gene
losses will find a maximum of 18 losses (5+13) along this lineage. Missing 83%
of all gene losses would appear to be a major disadvantage of these methods.

However, the apparent failure of these methods in identifying gene losses
masks a more complicated result. In the recent paper by Zhu et al. [15] the
authors state that: “gene loss normally leaves behind a pseudogene.” Motivated
to determine the accuracy of this statement, we have examined the pattern of
gene loss using nine Drosophila species with respect to the D. melanogaster lin-
eage. Despite the 91 cases of total gene loss without the presence of a pseudogene,
our results appear to at least partly support the Zhu et al. [15] supposition: only
one of these 91 cases corresponds to the complete removal of a recently lost gene
(Figure 1, row A). In other words, most of these losses may indeed have left
behind a pseudogene, and only over time have these pseudogenes been degraded
beyond recognition. Because there are only a few recent (< 10 million years)
losses in D. melanogaster among the set considered here, it is hard to determine
exactly what proportion initially leave behind a pseudogene as opposed to being
completely deleted.

This result also raises the issue of the timeframe over which pseudogene-
based methods can be used. For example, the Zhu et al. [15] study used the
mouse genome to predict gene models of human pseudogenes. Though the di-
vergence time between human and mouse is much greater than even the most
distantly related Drosophila, the level of nucleotide divergence is equivalent to
approximately the Dmel-Dyak split; comparing D. melanogaster and D. willis-
toni is equivalent to comparing the human genome to a lizard genome [18]. It
is obvious that pseudogene-based methods cannot be used beyond the limits of
our ability to identify the homologs of pseudogenes, and it may simply be that
they are inappropriate or less useful in rapidly evolving lineages. It should be
reiterated, however, that these problems do not result in any false positives, only
false negatives.

In contrast to pseudogene-based methods, the clustering method used here
identified a large number of gene losses across all time-scales of comparison.
While we have not determined how many gene losses potentially identified by
pseudogene-based methods were not identified by our clustering method, we ex-
pect this number to be small. If a pseudogene were present in the D. melanogaster
genome, our method should also identify the loss of a homologous gene in the
relevant gene family. The clustering method did result in a single false positive
due to misclustering of genes into families, but this case was easily identified
through follow-up analyses. Finally, the clustering method has the added prop-
erty of finding a large number of previously unannotated genes initially identified
by the lack of homologous proteins in D. melanogaster [21,18]; it also found a
number of cases of misannotation in the other Drosophila species that can be
fixed. These fortuitous results should be of benefit regardless of the divergence
times among the genomes considered.

24 J.C. Costello, M.V. Han, and M.W. Hahn

5 Funding

Computing resources provided by the Center for Genomics and Bioinformatics
were supported in part by the METACyt Initiative of Indiana University, funded
by a major grant from the Lilly Endowment. This research was supported by
grants from the National Science Foundation (DBI-0543586) and National Insti-
tutes of Health (R01-GM076643A) to MWH.

References

1. Nielsen, R., Bustamante, C., Clark, A., Glanowski, S., Sackton, T., et al.: A scan
for positively selected genes in the genomes of humans and chimpanzees. PLoS
Biol. 3, e170 (2005)

2. Dermitzakis, E., Reymond, A., Lyle, R., Scamuffa, N., Ucla, C., et al.: Numerous
potentially functional but non-genic conserved sequences on human chromosome
21. Nature 420, 578–582 (2002)

3. Pollard, K., Salama, S., Lambert, N., Lambot, M., Coppens, S., et al.: An RNA
gene expressed during cortical development evolved rapidly in humans. Nature 443,
167–712 (2006)

4. Aravind, L., Watanabe, H., Lipman, D., Koonin, E.: Lineage-specific loss and di-
vergence of functionally linked genes in eukaryotes. PNAS USA 97, 11319–11324
(2000)

5. Hughes, A., Friedman, R.: Recent mammalian gene duplications: robust search for
functionally divergent gene pairs. J. Mol. Evo. 59, 114–120 (2004)

6. Roelofs, J., Van Haastert, P.: Genes lost during evolution. Nature 411, 1013–1014
(2001)

7. Olson, M.: When less is more: gene loss as an engine of evolutionary change, Amer-
ican journal of human genetics. Am. J. Human Genet. 64, 18–23 (1999)

8. Olson, M., Varki, A.: Sequencing the chimpanzee genome: insights into human
evolution and disease. Nature Rev. 4, 20–28 (2003)

9. Chou, H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., et al.: A mutation
in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence.
PNAS USA 95, 11751–11756 (1998)

10. Szabo, Z., Levi-Minzi, S., Christiano, A., Struminger, C., Stoneking, M., et al.:
Sequential loss of two neighboring exons of the tropoelastin gene during primate
evolution. J. Mol. Evo. 49, 664–671 (1999)

11. Angata, T., Margulies, E., Green, E., Varki, A.: Large-scale sequencing of the
CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution
by multiple mechanisms. PNAS USA 101, 13251–13256 (2004)

12. Stedman, H., Kozyak, B., Nelson, A., Thesier, D., Su, L., et al.: Myosin gene
mutation correlates with anatomical changes in the human lineage. Nature 428,
415–418 (2004)

13. Hahn, Y., Lee, B.: Identification of nine human-specific frameshift mutations by
comparative analysis of the human and the chimpanzee genome sequences. Bioin-
formatics 21(suppl.1), 186–194 (2005)

14. Wang, X., Grus, W., Zhang, J.: Gene losses during human origins. PLoS Biol. 4,
52 (2006)

15. Zhu, J., Sanborn, J., Diekhans, M., Lowe, C., Pringle, T., Haussler, D.: Compara-
tive Genomics Search for Losses of Long-Established Genes on the Human Lineage.
PLoS Comput. Biol. 3, 247 (2007)

Limitations of Pseudogenes in Identifying Gene Losses 25

16. Kvikstad, E., Tyekucheva, S., Chiaromonte, F., Makova, K.: A macaque’s-eye
view of human insertions and deletions: differences in mechanisms. PLoS Com-
put. Biol. 3, 1772–1782 (2007)

17. Petrov, D., Hartl, D.: Patterns of nucleotide substitution in Drosophila and mam-
malian genomes. PNAS USA 96, 1475–1479 (1999)

18. Stark, A., Lin, M., Kheradpour, P., Pedersen, J., Parts, L., et al.: Discovery of
functional elements in 12 Drosophila genomes using evolutionary signatures. na-
ture 450, 219–232 (2007)

19. Clark, A., Eisen, M., Smith, D., Bergman, C., Oliver, B., et al.: Evolution of genes
and genomes on the Drosophila phylogeny. Nature 450, 203–208 (2007)

20. Richards, S., Liu, Y., Bettencourt, B., Hradecky, P., Letovsky, S., et al.: Compar-
ative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and
cis-element evolution. Genome Res. 15, 1–18 (2005)

21. Hahn, M., Han, M., Han, S.G.: Gene Family Evolution across 12 Drosophila
Genomes. PLoS Genet. 3, e197 (2007)

22. Hoskins, R., Carlson, J., Kennedy, C., Acevedo, D., Evans-Holm, M., et al.: Se-
quence finishing and mapping of Drosophila melanogaster heterochromatin. Sci-
ence 316, 1625–1628 (2007)

23. Smith, C., Shu, S., Mungall, C., Karpen, G.: The Release 5.1 annotation of
Drosophila melanogaster heterochromatin. Science 316, 1586–1591 (2007)

24. Birney, E., Clamp, M., Durbin, R.: GeneWise and Genomewise. Genome Res. 14,
988–995 (2004)

25. Long, M.: A new function evolved from gene fusion. Genome Res. 10, 1655–1657
(2000)

26. Zhang, Z., Gerstein, M.: Large-scale analysis of pseudogenes in the human genome.
Curr. Opin. Genet. Dev. 14, 328–335 (2004)

27. Demuth, J., De Bie, T., Stajich, J., Cristianini, N., Hahn, M.: The evolution of
mammalian gene families. PLoS One 1, e85 (2006)

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 26–39, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Duplication Mechanism and Disruptions in Flanking
Regions Influence the Fate of Mammalian Gene

Duplicates

Paul Ryvkin1, Jin Jun2, Edward Hemphill3, and Craig Nelson3

1 Genomics and Computational Biology Graduate Group, University of Pennsylvania,
Philadelphia, PA 19104, USA
pry@mail.med.upenn.edu

2 Department of Computer Science and Engineering, University of Connecticut,
Storrs, CT 06269, USA

jinjun@engr.uconn.edu
3 Department of Molecular and Cell Biology, University of Connecticut,

Storrs, CT, 06269, USA
{edward.hemphill_iii,craig.nelson}@uconn.edu

Abstract. Here we identify duplicated genes in five mammalian genomes and
classify these duplicates based on the mechanisms by which they were gener-
ated. Retrotransposition accounts for at least half of all predicted duplicate
genes in these genomes, with tandem and interspersed duplicates comprising
the other half. Estimation of the evolutionary rates in each class revealed greater
rate asymmetry between retrotransposed and interspersed segmental duplicate
pairs than between tandem duplicates, suggesting that retrotransposed and inter-
spersed segmental duplicates are diverging more quickly. In an attempt to un-
derstand the basis of this asymmetry we identified disruption of flanking DNA
as an indicator of new duplicate fate. Loss of synteny accelerates the asymmetry
of divergence of DNA-mediated duplicates duplicates. These findings suggest
that the differential evolution of duplicate genes may be significantly influenced
by changes in local genome architecture and synteny.

Keywords: duplication, retrotransposition, segmental, tandem, asymmetry.

1 Introduction

Gene duplication has long been recognized as an important contributor to the evolu-
tion of organismal complexity [1]. Large gene families, which comprise a major por-
tion of mammalian genomes and carry out some of its most important functions, are
the result of the gene duplication process. Hox genes, olfactory receptors, and many
vertebrate growth factors are well-known examples of such families. Recent data
reveals that lineage-specific gene family expansions and contractions comprise a large
portion of the differences between closely related mammalian genomes. For example,
while it is often stated that there is a 2-5% nucleotide difference between the human
and chimpanzee genomes [2][3], this comparison ignores variation in gene copy
number and the divergence of duplicated genes. [4][5][6].

 Duplication Mechanism and Disruptions 27

1.1 There Are Several Mechanisms of Gene Duplication

Several types of duplication have been observed in genomes to date, including whole
genome duplication, segmental duplication, and retrotransposition. The last whole
genome duplication in the mammalian lineage is thought to have occurred before the
emergence of modern mammals [7][8]. In contrast, segmental and retrotransposed
duplication are ongoing processes. Segmental duplications, in which sections of DNA
are duplicated either in tandem or across chromosomes, are DNA-mediated processes
that preserve varying amounts of the original gene’s intron-exon structure and varying
amounts of flanking intergenic DNA. Contrast this with retrotransposition, a process
in which a spliced mRNA transcript is reverse transcribed into DNA and spontane-
ously integrated into a random genomic location [9]. In this case an intronless gene
copy is created whose flanking DNA is unrelated to that of the parent gene. Since the
ability of a gene to be transcribed depends on the existence of promoters and other
cis-regulatory elements in proximity, such retrogenes are generally believed to be
non-functional unless they are deposited within the range of influence of regulatory
regions of other genes. However, recent studies have shown that many of these genes
can, in fact, be functional [10][11][12][13].

1.2 Factors Influencing the Fate of Duplicated Genes Remain Unresolved

Despite our knowledge of the mechanisms by which duplicates are generated, the rela-
tive importance of various factors in determining the retention and evolution of dupli-
cate genes remains a major unresolved question. One of the first models proposed for
the evolution of gene duplicates was that of non- vs. neo-functionalization. This model
assumes that the two genes are functionally redundant and that one copy either experi-
ences disabling mutations or acquires a new function through positive selection. The
more recently developed model of subfunctionalization allows for another possibility:
the genes lose complementary functions or expression domains until both are retained
because the sum of their individual functions maintains the original [14]. The duplica-
tion-degeneration-complementation (DDC) version of this model specifically predicts
complementation of expression domains [15]. In addition to assuming redundancy, the
DDC model’s degeneration is often envisioned as a gradual process. However, since
many mutations consist of transpositions, insertions, and deletions of vast stretches of
DNA, changes in regulatory information may often be very abrupt.

While several paralogs with complementary expression domains have been ob-
served [16][17], it is not clear that the DDC model is the best general predictor for the
fate of most gene duplication events. Both the DDC and the neo-functionalization
models assume that duplicate genes are equal at the time of duplication. However, this
is clearly not true for retrotransposed gene copies. Furthermore, while the DDC model
attempts to explain the retention of duplicate genes by changes in their regulation, it
does not explain differences in the evolutionary rates of their protein coding regions.
Studies have shown little to no coupling between regulatory and protein evolution in
duplicates [18][19][20], despite others pointing out widespread asymmetry in evolu-
tionary rates between the protein coding regions of duplicate genes [21][22]. One
study has shown that duplication mechanism and genomic locality are important fac-
tors affecting rate asymmetry in rodent duplicates [23]. Another suggests that the

28 P. Ryvkin et al.

variability in recombination rates across the genome cause distal yeast duplicates to
evolve at different rates [24].

Here we show the relative contribution of each duplication mechanism to mammal-
ian gene families and examine the distinct consequences of each duplication mecha-
nism for duplicate fate. Our data suggest that retrotransposition produces nearly half of
all predicted gene duplicates in the human, chimpanzee, mouse, rat, and dog genomes.
We show that relocated and retrotransposed duplications yield genes whose coding
regions evolve more asymmetrically than tandem duplications, and that retrogenes
show greater rates of non-synonymous substitution and relaxed selective constraint
compared to their parent genes. Finally we show that among distant segmental dupli-
cates, disruptions in flanking regions correlate with a relaxation of selective constraint
on these duplicates, providing evidence that abrupt changes in cis-regulatory regions
can have profound effects on protein coding evolution in duplicate gene copies.

2 Methods

2.1 Sequence Retrieval and Protein Family Identification

Protein and DNA sequences for the five species analyzed (human, chimpanzee, dog,
mouse, and rat) were obtained from Ensembl release 37 [25]. For genes with multiple
alternatively spliced transcripts, we developed a collapsed gene model which merges
all potential exons from the gene's transcripts. Protein families were established via
Ensembl's family annotation [26]. The protein sequences of each family were aligned
with CLUSTALW, Kimura distances were computed, and trees were produced via
neighbor-joining [27][28]. Due to CLUSTALW's excessive computation time when
aligning more than 50 sequences at once, protein families with more than 50 members
were excluded from further analysis. Singleton families and families containing genes
on unassembled contigs were also excluded.

2.2 Clustering of Orthologs

We used BranchClust [29] to determine orthologous groups with its one free parame-
ter (number of species required for a full cluster) set to 3. This value was optimal
given our species tree; it allowed for loss of either the primate or rodent lineages
within clusters. Higher values would have disallowed such events and lower values
would have counted primate/rodent duplications as separate clusters, which is not
desirable. In short, BranchClust works by traversing the gene tree from leaf to root,
building clusters such that a maximal number of species is represented in each cluster.
It selects initial leaves which minimize the number of extraneous members (in-
paralogs) within each cluster. The method proved to be robust in the face of small
differences between the gene phylogeny and species phylogeny because it is insensi-
tive to the precise gene tree topology within any given cluster.

2.3 Inference of Duplication Events

For each orthologous group, the species tree was traversed and the number of genes
from each species was counted. Orthologous groups (OG’s) that contained greater

 Duplication Mechanism and Disruptions 29

than one gene from a species indicated duplications in that lineage. Using an assump-
tion of simple parsimony, gains in related lineages were moved to appropriate paren-
tal nodes in the species tree. For example, duplicates in both human and chimp in one
OG, are considered one duplication event on the branch leading from the primate-
rodent split to the human-chimpanzee split. This procedure was applied recursively:
For each species node, if all children have greater than one representative gene in the
cluster, subtract from their counts the minimum count among them (minus one) and
add this value to the parent node’s count.

The Ensembl dataset contains some genes that are annotated as two or more sepa-
rate gene fragments. These fragments appear on the phylogenetic trees as paralogs in
1:x relationships with other species, where x > 1. We consider genes to be fragments
if they are apparent inparalogs on the phylogenetic tree yet they have a global-
alignment identity of less than 25% with an ortholog in the closest species. As a con-
sequence, any partial duplications (those that act on less than 25% of a gene) were
removed from our analysis. Out of 57,733 genes, 1,123 (2.3%) were classified as
fragments.

2.4 Distinguishing between Gene Duplication Mechanisms

Since a retrogene typically does not duplicate the parental gene's flanking region or
introns, classification as DNA-mediated duplication or retrotransposition (RT) was
based on two criteria: local gene synteny and exon-intron structure conservation.
Local synteny between two genes is defined by the sequence similarity and collinear-
ity of their neighboring genes.

We established local synteny between two genes by comparing their five neighbor-
ing genes on each side. For each side we counted the number of collinear neighbors
for each gene which were orthologous. Orthology between these neighbors was de-
fined by reciprocal BLASTP scores, requiring a minimum score of 50 and sequence
identity of 80%. In order to be locally syntenic, two genes must have at least two
collinear orthologous neighbors in total or one orthologous neighbor on each side.

Intron conservation was taken as the number of orthologous intron positions be-
tween two genes as defined by Rogozin et al.; orthologous introns are introns in two
genes whose positions in the protein alignment are within a certain number of resi-
dues [30]. We generated protein alignments using MUSCLE [31], noting the locations
of introns in the protein alignments, and intron positions were matched using a “slide”
threshold of 4 residues.

We considered a duplication event to be DNA-mediated if either of the following
two conditions held: 1) the genes are locally syntenic or 2) they have at least one
conserved intron. In order for a duplication to be classified as RT the genes must be
non-syntenic and 1) one gene must be intronless and the other one not or 2) the genes
both have fewer than 3 introns, their intron counts are different, and there are no con-
served introns between them. Here we assume that intron gain is a relatively rare
event in the timescale studied [32], and newly gained introns in retrogenes are not
positionally conserved. We further classified segmental duplicates as distant (inter-
spersed) or tandem by searching for each duplicate’s paralog within 5 genes in both
the 5’ and 3’ directions. If paralogs were found within this window the duplicate was
classified as tandem.

30 P. Ryvkin et al.

2.5 Computing Pairwise dN/dS

We calculated synonymous and non-synonymous divergence between pairs of dupli-
cates (paralogs) according to the Yang-Nielsen method [33], using the ‘yn00’ pro-
gram, which is a part of PAML.

2.6 Determining Rate Asymmetry

Using a method similar to that proposed in [23], we assigned duplicate pairs appropri-
ate outgroup genes and performed a maximum-likelihood relative rate analysis on the
resulting triplets using HYPHY [34]. The outgroup gene selected for each pair was
required to be orthologous to the pair, and belong to the closest species to the pair's
species. The evolutionary model used was that proposed in [35], where each branch
has two parameters associated with it: dN and dS. The normalized rate asymmetry
between two genes was defined as: R = |(p1 - p2)| / (p1 + p2), where p1 and p2 are the
parameters associated with each of the duplicates’ branches. In addition we calculate
a derived value, ω, defined as the ratio dN/dS and taken to be a measure of selective
constraint on a given branch. Thus we can obtain three measures of normalized
asymmetry between duplicates: RN, RS, and Rω, which correspond to asymmetry in
dN, dS, and ω, respectively. We excluded duplications with pairwise dS or dN lower
than 0.00001 or dS greater than 5 due to saturation effects.

2.7 Detection of Disrupted Flanking Regions

In order to locate genes with disrupted flanking regions we examined the syntenic
relationship between duplicates and their outgroup gene. We define paralogs as hav-
ing direct synteny if the gene immediately adjacent to each paralog is orthologous to
the outgroup gene’s neighbor (using the same BLASTP criteria as for local synteny).
This definition is distinct from local synteny – local synteny is based on any collinear
orthologous neighbors among the five flanking genes whereas direct synteny relies on
the nearest gene only. If both genes share direct synteny with the outgroup gene then
conservation of direct synteny is inferred. If one gene shares direct synteny and the
other does not, then a disruption is inferred. We excluded cases where neither gene
has synteny with the outgroup.

3 Results

3.1 Prevalence of Gene Duplication Types

Of the 4,386 mammalian duplication events we inferred, 1,593 form 1:2 ortholog
groups derived from a single duplication event, while the remaining duplications are
“one to many” events (1:N) where the genes belong to a larger duplication cluster. We
analyzed the 1:2 and 1:N duplications separately.

We counted the total number of duplications of each type (distant segmental, tandem,
and RT) among the 1:2 and 1:N groups. RT, responsible for 49% of the 1:2, and 41%
and 1:N duplicated genes, is the most common type of duplication event in these mam-
malian genomes (Figure 1). The most striking difference between the 1:2 duplicates

 Duplication Mechanism and Disruptions 31

Fig. 1. Prevalence of each duplication type divided into two classes based on whether or not the
duplicates are the result of exactly one duplication. These sets are restricted to genes with intact
ORFs that are annotated as protein-coding genes by Ensembl.

and the 1:N duplicates is the difference in the proportion of tandem duplications.
Among these clusters tandem duplications are significantly more highly represented
(p < 0.0001, X2 test).

3.2 Pairwise Analysis of Duplicate Age and Divergence

We calculated synonymous and non-synonymous divergence between pairs of dupli-
cates and used these estimates to calculate the degree of purifying selection on the
gene pair (dN/dS). Synonymous divergence (dS) reveals a striking difference in the
age profile of the duplication types (Figure 2). Consistent with observations of bursts
of RT in mammalian lineages [36], retrotransposed duplicates show a highly skewed
distribution of dS values. Additionally, their tight clustering in the very low dS range
suggests that most of these events occurred relatively recently. In contrast, tandem
duplications show dS values that are more evenly distributed over time, are less
tightly clustered around very low values, and have a higher mean dS. The observed
higher mean dS of tandem duplications is consistent with tandem duplications occur-
ring more uniformly over time than retrotranspositions. Distant segmental duplica-
tions show a very interesting pairwise dS profile. It is both more uniform and greater
than the other dS profiles, suggesting that these events occur at a more stable rate than
retrotranspositions, and are older than tandem duplications. The shifted age profile of
these distant segmental duplicates raises the possibility that many of them are the
result of translocated tandem duplicates. The differences in dS distributions between
duplication types demonstrates that the mechanism of duplication plays a large role in
determining whether and for how long a genome retains detectable duplicate gene
copies.

32 P. Ryvkin et al.

Pairwise analysis of the selective constraint (dN/dS) on duplicate pairs in each
class is less revealing. The distributions of pairwise dN/dS values for duplications of
each type show little difference from one another. Since the pairwise dN/dS ratio is a
measure of the average constraint on both duplicates, it is misleading when selective
constraint differs greatly between the duplicate genes (they are asymmetric).

Fig. 2. Distributions of pairwise synonymous divergence (dS) and constraint (dN/dS) on dupli-
cate pairs for each duplication type. Boxes represent interquartile range with the horizontal line
being the median; diamonds span a 95% confidence interval around the mean assuming nor-
mality. The vertical lines span the extents of 95% of a normal distribution fit to the data.

3.3 Tandem Duplications Show Lower Asymmetry in Selective Constraint

While pairwise analysis of the duplicate genes gives insight to the probable age of the
duplication event, it reveals little about the behavior of each individual copy relative
to the ancestral state. In order to gain better insight to the evolution of members of a
duplicate pair we identified an orthologous outgroup gene for each 1:2 duplication
event, yielding 1,388 gene triplets (two paralogs and an ortholog). For each triplet we
performed a maximum-likelihood analysis and used a significance value of 0.05 to
reject the null model of symmetric evolution. Using this threshold for statistically
significant asymmetry we found that tandem duplications are less frequently asym-
metric in selective constraint (ω) than either RT gene pairs or distant segmental gene
pairs (p < 0.001, Fisher’s Exact Test) (Figure 3a). Note that ω is a branch-specific
parameter analogous to the pairwise average dN/dS computed earlier; it is the ratio
dN/dS along a particular branch.

In order to assess the degree of rate asymmetry in each duplication class we
computed a measure of normalized rate asymmetry for each duplication event [23].
Retrotransposed and distant segmental duplications exhibit similar magnitudes of
asymmetry in selective constraint (Figure 3b) while tandem duplications show

 Duplication Mechanism and Disruptions 33

significantly lower asymmetry in constraint (p < 0.05, Tukey-Kramer HSD Test).
This trend parallels that of the asymmetry frequencies, which show that tandem dupli-
cates are less likely to be evolving asymmetrically than the other duplicate types.

Within the retrotransposed class we wanted to confirm that it is the retrotransposed
member of a gene pair that is more likely to show a relaxation of constraint. Those
genes that are intronless and non-syntenic are labeled as retrogenes. This allowed
determination of the retrogene in 1,043 out of the 1,589 RT events. These retrogenes
are significantly more likely to exhibit higher levels of dN, dS and ω than their paren-
tal genes (Fisher’s exact test, p < 0.0001), with dN and ω showing more of a differ-
ence. As a group the retrogenes have a median ω of 0.7 whereas their parental genes
have a median ω of only 0.03. A value of omega near 0.7 implies neutral selection in
the species studied [37], which is consistent with reports that most retroduplicates are
processed pseudogenes [38].

(a) (b)

Fig. 3. (a) Proportion of 1:2 duplications showing statistically significant asymmetry in branch-
specific selective constraint (ω) for each class. (b) Distribution of asymmetry values in branch-
specific selective constraint (ω) for each class. Boxes represent interquartile ranges with
diamonds spanning a 95% confidence interval around the mean assuming normality; vertical
lines span 95% of a normal distribution fitted to the data. See methods for computation of
constraint asymmetry, Rω.

3.4 Disruptions in Flanking Regions of Distant Segmental Duplicates Are
Associated with Greater Asymmetry in dN and Relaxed Selective Constraint

The difference we observe in the fate of distant and tandem segmental duplicates led
us to test the hypothesis that disruptions in the intergenic DNA surrounding duplicates
would correspond to changes in the course of that duplicate’s protein evolution.

34 P. Ryvkin et al.

We examined direct synteny in the 372 segmental duplications in the dataset (See
Methods). Distant segmental duplicates are more likely to be evolving asymmetrically
at the protein and DNA levels when one of the genes has lost direct synteny with the
outgroup (Table 1). This association is significant regardless of whether the disruption
occurred upstream or downstream of the duplicate. However, the probability of ob-
serving asymmetric constraint (ω), is only significantly higher for duplicates that
experience upstream disruptions (p=0.021 vs. p=0.113). This suggests that changes in
the 5’ flanking DNA of a gene may have a greater impact on that gene’s functional
importance than changes in the 3’ flanking DNA. Notably, none of these associations
were observed in tandem duplications. It appears that tandem duplications produce
paralogs which are apathetic to changes in direct flanking gene order. This may be
due to the influence of parental regulatory elements on the entire tandem array [39].

Having observed that distant duplicates are more likely to evolve asymmetrically
when one gene has lost direct synteny with the outgroup, we wanted to see if the gene
that had lost synteny is evolving faster or under less constraint than its fully syntenic
paralog. In order to establish which gene is evolving faster we flagged each duplicate
gene as either “changing” or “static” with respect to three parameters: dN, dS, and
constraint (ω). A prerequisite for inclusion in this analysis is that one gene in the pair
must have experienced a synteny disruption and the pair must be significantly asym-
metric in a given parameter. Therefore a gene that is flagged as “changing” must have
a significantly higher value than its “static” paralog. In order to determine whether the
synteny-disrupted genes were contributing to the asymmetry in evolution we gener-
ated 2x2 contingency tables of direct synteny and dN, dS, and ω and performed
Fisher’s Exact test. Among asymmetrically evolving distant segmental duplicates
where synteny was disrupted, the synteny-disrupted gene is more likely to have a
significantly higher dN, dS, and ω (p < 0.0001). Tandem duplicates show a slightly
different and much weaker association: synteny-disrupted tandem genes are only
more likely to have higher dN and dS not ω, and only when upstream synteny was
disrupted. The association between changes in direct synteny and changes in protein
evolution is stronger in distant segmental duplicates than in tandem segmental dupli-
cates. Furthermore, differences in selective constraint are more pronounced when
upstream synteny has changed than when downstream synteny has changed.

Table 1. Frequencies of asymmetry in non-synonymous and synonymous substitution rates (dN
and dS) and selective constraint (ω) by disruption of direct synteny. Significance was estab-
lished via Fisher’s exact test: *: p<0.05, **: p<0.01, ***: p < 0.001.

Duplication type N Frequency of asymmetry
 dN dS ω
Distant, 5' syntenic 22 50% 50% 9%
Distant, 5' disrupted 56 79%* 73%* 34%*
Distant, 3' syntenic 21 47% 38% 14%

Distant, 3' disrupted 65 78%** 80%*** 31%ns
Tandem, 5' syntenic 37 54% 43% 8%

Tandem, 5' disrupted 71 65%ns 49%ns 11%ns
Tandem, 3' syntenic 35 54% 43% 9%

Tandem, 3' disrupted 78 68%ns 51%ns 12%ns

 Duplication Mechanism and Disruptions 35

4 Discussion

4.1 Prevalence of Duplication Mechanisms

Our observation of the strong contribution of retrotransposition to mammalian ge-
nomes is consistent with other recent observations of high rates of retrotransposition
[36][40][41]. By some estimates, processed pseudogenes (resulting from retrotranspo-
sition events) outnumber non-processed pseudogenes (segmental duplicates) by a
ratio of 7:1 in mouse and 3:1 in human [40]. While many of these retrotransposed
duplicates may ultimately suffer inactivating mutations and devolve into pseu-
dogenes, some of them are clearly under purifying selective constraint and have been
incorporated into important aspects of mammalian biology [42][11]. Very recent
evidence also indicates that retrocopies may give rise to functional siRNAs [12][13].
While the complete extent of the contribution of retrotransposed duplicates to new,
functional, mammalian genes remains unknown, the sheer number of these events
suggests careful consideration of this mechanism and its impact on mammalian evolu-
tion is warranted. The abundance of RT duplicates indicates that the majority of gene
duplications produce paralogs that are functionally distinct at birth.

4.2 Pairwise dS Differs across Duplication Types

Several factors may be responsible for the large variation in dS distributions we find
across the duplication types. Under the molecular clock assumption, the differences in
dS could be explained simply in terms of duplicate age. The lower dS of retrotrans-
posed duplicates may be due to recent bursts of retrotransposition in mammalian
genomes combined with the affect of older retrogenes accumulating disablements and
becoming processed pseudogenes at a greater rate than segmental duplicates. The
difference in pairwise dS between distant segmental and tandem duplicates may also
be explained by differences in age.

Several studies have noted that intra-chromosomal duplicates show lower sequence
divergence than inter-chromosomal duplicates, lending support to the idea that distant
duplicates may be the result of tandem duplication followed by chromosomal rear-
rangement [43] The homogenizing effect of gene conversion may contribute to this
phenomenon. Gene conversion retards the divergence of tandem paralogous DNA
sequences. Our observation of lower dS among tandem duplicates is consistent with
gene conversion having a greater homogenizing effect on local duplicates than on
distant ones [44]. However, our data indicates similar levels of average divergence
across all duplication types – we observe that tandem duplicates are evolving at more
similar rates to each other, but at higher rates than the static copies in RT and distant
segmental duplicates.

Pairwise dN/dS distributions are similar across duplication mechanisms implying
that the average selective constraint on pairs of duplicates is similar regardless of the
mechanism that generated the duplicate pair. Hence from the perspective of pairwise
dN/dS, an accelerating retrogene and its highly constrained parent appear similar to
two tandem duplicates that are moderately constrained. If two proteins are allowed to
evolve symmetrically at a greater rate, what are the functional implications? Assum-
ing they are both functional, there are two possibilities: Either most protein mutations

36 P. Ryvkin et al.

are functionally neutral, or separate proteins can complement each other via the sub-
functionalization of protein domains. The relative contributions of neutrality and
subfunctionalization to the symmetric evolution of duplicate proteins is unknown.

4.3 Duplicate Rate Asymmetry

We established that the retrogene in each asymmetric pair was almost always evolv-
ing more quickly than its parent. Only in 33 out of 292 cases did the reverse occur. It
has been suggested that these represent rare cases where the retrogene has been placed
into a regulatory context that renders it more important than the parental gene [23]. It
is also possible that retrogenes are biased towards deposition in regulatory regions
due to higher chromatin accessibility, thus having an impact on the expression of
nearby genes. However, in all of these cases the parental gene also has significantly
higher dS than the retrogene, implying that the apparent acceleration in parental pro-
tein evolution may simply be due to differences in local mutation rates.

While relatively infrequent in general, asymmetry in selective constraint (ω) is
more frequently associated with relocated duplicates than with duplicates in the same
genomic neighborhood, consistent with a study that found similar rates of nonsyn-
onymous evolution of linked genes [45] and another that found increased constraint
asymmetry in relocated rodent duplicates [23]. This raises an important question:
Why do tandem genes evolve at more similar rates? Several studies have shown that
genes that are local to one another are often co-expressed and share regulatory infor-
mation [46][47][48]. Other studies have shown that functionally-related genes tend to
be co-expressed [49][50]. Is the constraint similarity of local duplicates due to their
functional similarity or shared proximal regulatory modules? We tried to resolve this
question by looking at relocated duplicates in more detail. One of our criteria for
distant segmental duplicates is that they must be next to two collinear orthologous
genes or one on either side. Consequently, these duplicates belong to duplicated seg-
ments at least three genes in length and are likely to share some promoter sequences
with their paralogs. We showed that disruptions directly adjacent to these relocated
duplicates are associated with higher frequencies of rate asymmetry. Furthermore,
asymmetry in constraint is slightly more probable in duplicates that have experienced
disruptions of upstream synteny as opposed to downstream synteny. These disruptions
may correspond to indels or rearrangements in the genes’ promoter regions, abruptly
altering their expression profiles. In contrast, the association is much weaker and not
statistically significant for tandem duplicates – there, the buffering effect of a multi-
gene regulatory context may provide robustness in the face of such disruptions. The
similarity in constraint asymmetry between directly syntenic relocated duplicates and
tandem duplicates suggests that loss of co-regulation may cause the evolution of distal
protein sequences to become uncoupled.

References

1. Ohno, S.: Evolution by Gene Duplication. Springer, New York (1970)
2. Britten, R.J.: Divergence Between Samples of Chimpanzee and Human DNA Sequences Is

5%, Counting Indels. Proc. Natl. Acad. Sci. U S A 99, 13633–13635 (2002)

 Duplication Mechanism and Disruptions 37

3. Fujiyama, A., Watanabe, H., Toyoda, A., Taylor, T.D., et al. (17 co-authors).: Construction
and Analysis of a Human-chimpanzee Comparative Clone Map. Science 295, 131–134
(2002)

4. Fortna, A., Kim, Y., MacLaren, E., Marshall, K., et al. (16 co-authors).: Lineage-specific
Gene Duplication and Loss in Human and Great Ape Evolution. PLoS Biol. 2, e207 (2004)

5. Bailey, J.A., Eichler, E.E.: Primate Segmental Duplications: Crucibles of Evolution, Di-
versity and Disease. Nat. Rev. Genet. 7(7), 552–564 (2006)

6. Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., Hahn, M.W.: The Evolution of
Mammalian Gene Families. PLoS One 1, E85 (2006)

7. Panopoulou, G., Hennig, S., Groth, D., Krause, A., Poustka, A.J., Herwig, R., Vingron, M.,
Lehrach, H.: New Evidence for Genome-wide Duplications at the Origin of Vertebrates
Using an Amphioxus Gene Set and Completed Animal Genomes. Genome Res. 13, 1056–
1066 (2003)

8. Dehal, P., Boore, J.L.: Two Rounds of Whole Genome Duplication in the Ancestral Verte-
brate. PLoS Biol. 3, e314 (2005)

9. Esnault, C., Maestre, J., Heidmann, T.: Human Line Retrotransposons Generate Processed
Pseudogenes. Nat. Genet. 24, 363–367 (2000)

10. Harrison, P.M., Zheng, D., Zhang, Z., Carriero, N., Gerstein, M.: Transcribed Processed
Pseudogenes in the Human Genome: an Intermediate Form of Expressed Retrosequence
Lacking Protein-coding Ability. Nucleic Acids Res. 33, 2374–2383 (2005)

11. Vinckenbosch, N., Dupanloup, I., Kaessmann, H.: Evolutionary Fate of Retroposed Gene
Copies in the Human Genome. Proc. Natl. Acad. Sci. U S A 103, 3220–3225 (2006)

12. Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., Hodges, E.,
Anger, M., Sachidanandam, R., Schultz, R.M., Hannon, G.J.: Pseudogene-derived Small
Interfering RNAs Regulate Gene Expression in Mouse Oocytes. Nature 453, 534–538
(2008)

13. Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y.,
Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki, Y., Sasaki, H.: En-
dogenous siRNAs from Naturally Formed dsRNAs Regulate Transcripts in Mouse Oo-
cytes. Nature 453, 539–543 (2008)

14. Hughes, A.L.: The Evolution of Functionally Novel Proteins After Gene Duplication. Proc.
Biol. Sci. 256, 119–124 (1994)

15. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., Postlethwait, J.: Preservation
of Duplicate Genes by Complementary, Degenerative Mutations. Genetics 151, 1531–1545
(1999)

16. Serluca, F.C., Sidow, A., Mably, J.D., Fishman, M.C.: Partitioning of Tissue Expression
Accompanies Multiple Duplications of the Na+/K+ ATPase Alpha Subunit Gene. Genome
Res. 11, 1625–1631 (2001)

17. Adams, K.L., Cronn, R., Percifield, R., Wendel, J.F.: Genes Duplicated by Polyploidy
Show Unequal Contributions to the Transcriptome and Organ-specific Reciprocal Silenc-
ing. Proc. Natl. Acad. Sci. U S A 100, 4649–4654 (2003)

18. Wagner, A.: Decoupled Evolution of Coding Region and Mrna Expression Patterns After
Gene Duplication: Implications for the Neutralist-selectionist Debate. Proc. Natl. Acad.
Sci. U S A 97, 6579–6584 (2000)

19. Gu, Z., Nicolae, D., Lu, H.H., Li, W.H.: Rapid Divergence in Expression Between Dupli-
cate Genes Inferred from Microarray Data. Trends Genet. 18, 609–613 (2002)

20. Castillo-Davis, C.I., Hartl, D.L., Achaz, G.: Cis-regulatory and Protein Evolution in
Orthologous and Duplicate Genes. Genome Res. 14, 1530–1536 (2004)

38 P. Ryvkin et al.

21. Conant, G.C., Wagner, A.: Asymmetric Sequence Divergence of Duplicate Genes. Ge-
nome Res. 13, 2052–2058 (2003)

22. Lynch, M., Katju, V.: The Altered Evolutionary Trajectories of Gene Duplicates. Trends
Genet. 20, 544–549 (2004)

23. Cusack, B.P., Wolfe, K.H.: Not Born Equal: Increased Rate Asymmetry in Relocated and
Retrotransposed Rodent Gene Duplicates. Mol. Biol. Evol. 24, 679–686 (2007)

24. Zhang, Z., Kishino, H.: Genomic Background Predicts the Fate of Duplicated Genes: Evi-
dence from the Yeast Genome. Genetics 166, 1995–1999 (2004)

25. Birney, E., Andrews, D., Caccamo, M., Chen, Y., et al. (51 co-authors).: Ensembl 2006.
Nucleic Acids Res. 34, d556–d561 (2006)

26. Enright, A.J., Dongen, S.V., Ouzounis, C.A.: An Efficient Algorithm for Large-scale De-
tection of Protein Families. Nucleic Acids Res. 30, 1575–1584 (2002)

27. Saitou, N., Nei, M.: The Neighbor-joining Method: a New Method for Reconstructing
Phylogenetic Trees. Mol. Biol. Evol. 4, 406–425 (1987)

28. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Clustal W: Improving the Sensitivity of Pro-
gressive Multiple Sequence Alignment Through Sequence Weighting, Position-specific
Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 22, 4673–4680 (1994)

29. Poptsova, M.S., Gogarten, J.P.: Branchclust: A Phylogenetic Algorithm for Selecting Gene
Families. Bmc Bioinformatics 8, 120 (2007)

30. Rogozin, I.B., Sverdlov, A.V., Babenko, V.N., Koonin, E.V.: Analysis of Evolution of
Exon-intron Structure of Eukaryotic Genes. Brief Bioinform. 6, 118–134 (2005)

31. Edgar, R.C.: Muscle: a Multiple Sequence Alignment Method with Reduced Time and
Space Complexity. Bmc Bioinformatics 5, 113 (2004)

32. Babenko, V.N., Rogozin, I.B., Mekhedov, S.L., Koonin, E.V.: Prevalence of Intron Gain
Over Intron Loss in the Evolution of Paralogous Gene Families. Nucleic Acids Res. 32,
3724–3733 (2004)

33. Yang, Z., Nielsen, R., Goldman, N., Pedersen, A.M.: Codon-substitution Models for Het-
erogeneous Selection Pressure at Amino Acid Sites. Genetics 155, 431–449 (2000)

34. Pond, S.L.K., Frost, S.D.W., Muse, S.V.: Hyphy: Hypothesis Testing Using Phylogenies.
Bioinformatics 21, 676–679 (2005)

35. Muse, S.V.: Estimating Synonymous and Nonsynonymous Substitution Rates. Mol. Biol.
E 13, 105–114 (1996)

36. Marques, A.C., Dupanloup, I., Vinckenbosch, N., Reymond, A., Kaessmann, H.: Emer-
gence of Young Human Genes After a Burst of Retroposition in Primates. Plos Biol. 3,
e357 (2005)

37. Emerson, J.J., Kaessmann, H., Betran, E., Long, M.: Extensive Gene Traffic on the Mam-
malian X Chromosome. Science 303, 537–540 (2004)

38. Zhang, Z., Harrison, P.M., Liu, Y., Gerstein, M.: Millions of Years of Evolution Pre-
served: a Comprehensive Catalog of the Processed Pseudogenes in the Human Genome.
Genome Res. 13, 2541–2558 (2003)

39. Mijalski, T., Harder, A., Halder, T., Kersten, M., Horsch, M., Strom, T.M., Liebscher,
H.V., Lottspeich, F., Angelisde, M.H., Beckers, J.: Identification of Coexpressed Gene
Clusters in a Comparative Analysis of Transcriptome and Proteome in Mouse Tissues.
Proc. Natl. Acad. Sci. U S A 102, 8621–8626 (2005)

40. Zhang, Z., Carriero, N., Gerstein, M.: Comparative Analysis of Processed Pseudogenes in
the Mouse and Human Genomes. Trends Genet. 20, 62–67 (2004)

41. Pan, Z., Zhang, L.: Quantifying the Major Mechanisms of Recent Gene Duplications in the
Human and Mouse Genomes: a Novel Strategy to Estimate Gene Duplication Rates. Gen.
Biol. 8, r158 (2007)

 Duplication Mechanism and Disruptions 39

42. Bradley, J., Baltus, A., Skaletsky, H., Royce-Toll, M., Dewar, K., Page, D.C.: An X-to-
autosome Retrogene Is Required for Spermatogenesis in Mice. Nat. Genet. 36, 872–876
(2004)

43. Friedman, R., Hughes, A.L.: The Temporal Distribution of Gene Duplication Events in a
Set of Highly Conserved Human Gene Families. Mol. Biol. Evol. 20, 154–161 (2003)

44. Padhukasahasram, B., Marjoram, P., Nordborg, M.: Estimating the Rate of Gene Conver-
sion on Human Chromosome 21. Am. J. Hum. Genet. 75, 386–397 (2004)

45. Williams, E.J., Hurst, L.D.: The Proteins of Linked Genes Evolve at Similar Rates. Na-
ture 407, 900–903 (2000)

46. Lercher, M.J., Blumenthal, T., Hurst, L.D.: Coexpression of Neighboring Genes in
Caenorhabditis Elegans Is Mostly Due to Operons and Duplicate Genes. Genome Res. 13,
238–243 (2003)

47. Cohen, B.A., Mitra, R.D., Hughes, J.D., Church, G.M.: A Computational Analysis of
Whole-genome Expression Data Reveals Chromosomal Domains of Gene Expression. Nat.
Genet. 26, 183–186 (2000)

48. Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z., et al. (22 co-authors).: Ge-
nomic Regulatory Blocks Encompass Multiple Neighboring Genes and Maintain Con-
served Synteny in Vertebrates. Genome Res. 17, 545–555 (2007)

49. Lercher, M.J., Urrutia, A.O., Hurst, L.D.: Clustering of Housekeeping Genes Provides a
Unified Model of Gene Order in the Human Genome. Nat. Genet. 31, 180–183 (2002)

50. Singer, G.A.C., Lloyd, A.T., Huminiecki, L.B., Wolfe, K.H.: Clusters of Co-expressed
Genes in Mammalian Genomes Are Conserved by Natural Selection. Mol. Biol. Evol. 22,
767–775 (2005)

Estimating the Relative Contributions of New

Genes from Retrotransposition and Segmental
Duplication Events during Mammalian

Evolution

Jin Jun1, Paul Ryvkin2, Edward Hemphill3, Ion Măndoiu1, and Craig Nelson3

1 Computer Science & Engineering Department, University of Connecticut, Storrs,
CT, 06269, USA

{jinjun,ion}@engr.uconn.edu
2 Genomics & Computational Biology Graduate Group, University of Pennsylvania,

Philadelphia, PA 19104, USA
pry@mail.med.upenn.edu

3 Genetics & Genomics Program, Department of Molecular & Cell Biology,
University of Connecticut, Storrs, CT 06269, USA
{edward.hemphill iii,craig.nelson}@uconn.edu

Abstract. Gene duplication has long been recognized as a major force
in genome evolution and has recently been recognized as an important
source of individual variation. For many years the origin of functional
gene duplicates was assumed to be whole or partial genome duplication
events, but recently retrotransposition has also been shown to contribute
new functional protein coding genes and siRNA’s. Here we present a
method for the identification and classification of retrotransposed and
segmentally duplicated genes and pseudogenes based on local synteny.
Using the results of this approach we compare the rates of segmental
duplication and retrotransposition in five mammalian genomes and esti-
mate the rate of new functional protein coding gene formation by each
mechanism. We find that retrotransposition occurs at a much higher and
temporally more variable rate than segmental duplication, and gives rise
to many more duplicated sequences over time. While the chance that
retrotransposed copies become functional is much lower than that of
their segmentally duplicated counterparts, the higher rate of retrotrans-
position events leads to nearly equal contributions of new genes by each
mechanism.

1 Introduction

The impact of changes in gene copy number on both evolution and human health
are under increasing scrutiny. While the creation of new genes and the modu-
lation of gene copy-number via duplication has long been recognized as an im-
portant mechanism for the evolution of lineage-specific traits [14], a number of
recent studies have suggested that variation in gene family size may be even more
widespread than previously appreciated [7] and that gene copy number variation

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 40–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Estimating the Relative Contributions 41

between individuals may account for differences in disease predisposition within
populations [18].

Three primary mechanisms of gene duplication have been described: whole
genome duplication [9,31], segmental duplication [3,23], and retrotransposition
[11,35]. Whole genome duplication has been important to the evolution of many
lineages [31], but it is a relatively rare event. Unlike whole genome duplication
events, segmental duplications occur continuously and have contributed signif-
icantly to the divergence of gene content between mammalian genomes. Dupli-
cation by retrotransposition also occurs quite frequently, but because these new
retrotransposed gene copies lack the flanking regulatory material of the parental
gene, they have long been believed to give rise primarily to non-functional
pseudogenes [16,25]. Recent studies however, have indicated the presence of
many apparently functional retrocopies in various mammalian genomes, chal-
lenging traditional perspectives on the relevance of this event to genome evo-
lution [17,21,27,32]. Very recently retrotransposition has also been shown to
contribute siRNA’s [28,33].

In this study we compare the rates of new gene formation by segmental du-
plication (SD) and retrotransposition (RT) in five eutherian genomes. We show
that, while genes arising from SD events are up to six times more likely to re-
main functional than those arising from RT events, the number of RT events
is nearly ten times that of SD events, resulting in roughly equal quantitative
contributions of new genes by each duplication mechanism. Our analysis further
shows that duplicate genes generated by each mechanism are under similar lev-
els of constraint on their protein coding regions and that silent site substitution
profiles of RT duplicate copies are consistent with bursts of retrotransposition
during mammalian evolution, while segmental duplication appears to occur at a
more stable rate.

2 Methods

2.1 Dataset

Protein sequences for the five species analyzed (human, chimp, mouse, rat and
dog) were obtained from Ensembl (release 37) [8]. For genes with multiple al-
ternative transcripts we developed a collapsed gene model that incorporates all
potential exons of that gene. Resulting exon coordinates were used to obtain a
representative protein sequence used for subsequent homology assignment and
dN/dS computations. Ensembl protein family annotations served as a starting
point for our analysis. Over all five species, there were 17,341 Ensembl families
comprising 113,543 genes. Excluding families with members on unassembled con-
tigs (no reliable synteny information) and families with more than 50 Ensembl
genes (due to the excessive computation time required to generate multiple align-
ments) resulted in 8,872 gene families containing 53,733 genes.

Pseudogenes were identified using Pseudopipe [36] seeded with known tran-
scripts from Ensembl release 37. Over all five species, 17,226 pseudogenes (14,189
processed pseudogenes and 3,037 non-processed pseudogenes) were detected.

42 J. Jun et al.

Each pseudogene was added to one of the 8,872 Ensembl gene families. This
process resulted in super-families consisting of both protein coding genes and
related pseudogenes.

2.2 Identification of RT and SD Events

Within each super-family a local synteny level was computed for all pairwise
combinations of super-family members. Local synteny is defined as homology of
upstream and downstream neighboring genes. For each pair, we checked homol-
ogy between the 3 nearest up- and downstream neighboring Ensembl annotated
genes. Homology between neighbors was defined by a BlastP [1] score of 50
or more and sequence similarity over 80% of corresponding protein sequences.
After this analysis, for every pair (gi, gj) of family members we obtained two
numbers 0 ≤ nij

u , nij
d ≤ 3 representing the homology upstream and downstream

neighbors. A synteny level si,j of 2 was assigned to every pair of genes or pseudo-
genes that had homologous neighbors on both sides, up and down (i.e., whenever
nij

u , nij
d ≥ 1). When one side lacked homologous neighbors, we assigned a syn-

teny level si,j of 1 only if the other side had at least two homologous neighbors;
otherwise (i.e., when nij

u + nij
d ≤ 1) we assigned a synteny level si,j of 0.

Local synteny levels were used in a two-stage clustering algorithm (see Algo-
rithm 1) to identify syntenic ortholog/paralog clusters. In our algorithm, for a
set X of genes and pseudogenes, Sp(X) denotes the set of species represented in
X . For a set S of species, LCA(S) denotes the last common ancestor in the phy-
logenetic tree. In the first stage, we used a single-linkage clustering algorithm to
obtain core clusters by merging pairs of genes and pseudogenes with local synteny
level of 2, predicted to be either orthologs or paralogs resulting from SD events
which preserve up and downstream neighbors. In the second stage, we merged
pairs of core clusters if every member of one cluster had synteny level of 1 to
every member of the other cluster. Any two non-overlapping clusters from this
two-stage clustering algorithm are mutually non-syntenic. Second stage clusters
spanning a phylogenetically contiguous subset of the species represented in larger
clusters from the same super-family represent putative descendants of RT events
or SD events that have lost local synteny. Since retrotransposed gene copies gen-
erally lack introns due to their RNA-intermediate nature, we distinguish between
these possibilities using intron content conservation scores as described below.

Within each cluster produced by the two-stage clustering algorithm there may
be successive segmental duplication events. We use UPGMA (Unweighted Pair
Group Method with Arithmetic mean) [26] to find these successive SD events.
For input to UPGMA we compute the distance between two members gi and gj

as the Pearson’s correlation coefficient between the two vectors, (nik
u +nik

d)k and
(njk

u +njk
d)k, i.e. sums of upstream and downstream homologous neighbors with

remaining genes gk in the cluster. Given the UPGMA gene trees, we counted
the inner nodes as SD events when two subtrees from such an inner node are
in a species-subset relationship. If two subtrees from an inner node had disjoint
species sets, this node was considered as a speciation event (Fig. 1).

Estimating the Relative Contributions 43

Algorithm 1. Two-Stage Clustering Algorithm
Input: Family of genes and pseudogenes F = {g1, g2, . . . , gN} with species

information and pairwise synteny levels si,j

Initialization:
C ← ∅
U ← {g1, g2, . . . , gN}

(Stage1) Single-linkage clustering with synteny level 2:
While U �= ∅ do

Select an arbitrary member gi of U
U ← U \ {gi}; Copen ← {gi}
While there exists gj ∈ U with synteny 2 to a member of Copen, do

U ← U \ {gi}; Copen ← Copen ∪ {gi} // Add gj to core cluster
C ← C ∪ Copen

(Stage2) Merging of clusters with high average pairwise synteny:
While there is a (Cl, Cm) where SYNTENIC TEST (Cl, Cm) is true, do

C ← C \ {Cl, Cm}
C ← C ∪ {Cl ∪ Cm}

Return C

SYNTENIC TEST(A, B)
If Sp(A) and Sp(B) are subsets of different lineages, i.e.

LCA(Sp(A)) �= LCA(Sp(A ∪ B)) and LCA(Sp(B)) �= LCA(Sp(A ∪B)), then
If si,j = 1 for every pair gi ∈ A, gj ∈ B then return true

Else, if LCA(Sp(A)) = LCA(Sp(A ∪B)) then
A′ ← set of genes/pseudogenes of A of species descending from LCA(Sp(B))
If si,j = 1 for every pair gi ∈ A′, gj ∈ B then return true

Else, return false

We distinguish between putative descendants of RT events or SD events that
have lost local synteny using intron conservation scores between descendant
genes and pseudogenes. The intron conservation rate between two paralogous
genes was calculated as the ratio of the number of shared introns divided by the
total number of intron positions from the protein/intron alignment between two
genes (based upon the method of [20]. An event was identified as an RT dupli-
cation if the average intron conservation rate to paralogs outside the cluster was
below 1/3.

2.3 Event Assignment to Tree Branches and Evidence of Function

We use parsimony to assign each inferred duplication event to a specific branch of
the 5-species tree. We assign each event to the tree branch corresponding to the
exact set of species spanned by the descendant genes of the detected duplication
event, which we refer to as assigned events. Intact events are defined as those
duplication events that have no apparent disruption (e.g. in stop codons) of the
protein coding reading frame and an Ensembl annotated gene in each of the

44 J. Jun et al.

Fig. 1. Inferring SD and RT events using local synteny and hierarchical clustering.
This example shows how SD and RT events are inferred from a super-family having 9
members: 2 members per each species except for dog, from the results of our clustering
algorithms (on the right side) to corresponding events (on the left side). By using two-
stage clustering algorithm, two syntenic clusters are formed, shown as hollow rounded
rectangles. Loss of introns in one cluster suggests that the loss of synteny was due
to an RT event. UPGMA builds hierarchical clusters within each syntenic cluster and
speciation and SD events are inferred based on species sets.

species spanned by the cluster. Functional events are defined by the clusters of
putative protein coding genes with average dN/dS ratio below 0.5 over all pairs
of genes within the cluster. Pairwise dN and dS measures were estimated using
the YN00 program of PAML [34].

3 Results

3.1 Lineage Distribution of Duplication Events

Events giving rise to clusters of genes with no conservation of synteny relative
to “parental” genes and low inter-cluster intron conservation rates were classi-
fied as RT events, while events giving rise to clusters of genes with high local
synteny to parental genes were classified as SD events. Events corresponding to
gene clusters with indeterminate intron conservation or local synteny to parental
genes were classified as ambiguous. This analysis resulted in the classification of

Estimating the Relative Contributions 45

Fig. 2. Numbers of gene duplication events from segmental duplication (above the line)
and retrotransposition (below the line). Numbers represent the assigned SD or RT events
on each branch. Numbers typeset in bold on three internal branches are counts of func-
tional events, defined in this study as intact events that yield clusters with average dN/dS
ratio below 0.5 over pairs of homologous Ensembl genes. For three internal branches, frac-
tions of the functional events over the total assigned events are shown, e.g. 53/161 for
SD events on primate branch. Evolutionary ages are based on [30].

a total of 2,035 SD events, 12,507 RT events, and 2,742 ambiguous events. Us-
ing parsimony to assign non-ambiguous events to branches of the species tree
resulted in 52 SD and 45 RT events on the branch leading to primates and
rodents (the in-group), 161 SD and 1,782 RT events on the primate branch
leading to humans and chimps, and 88 SD and 522 RT events on the rodent
branch leading to mice and rats (Fig. 2). Gene duplication events for the root
and terminal branches of the tree were also counted, but were not used for fur-
ther analysis due to the difficulty in estimating the degree of purifying selection
on very recent duplication on the terminal branches and the age of duplications
on the root. 386 SD and 429 RT events could not be reliably assigned to spe-
cific branches of the tree using parsimony and were also omitted from further
analysis.

Duplication event counts on the three internal branches of the tree reveal an
excess of RT events over SD events along all but the deepest branches of the
tree, suggesting an average rate of RT copy formation 3-10 times higher than
that of SD copy formation (Fig. 2). Deviation from this ratio along the in-group
branch may be the result of a period of relative inactivity of retrotransposition
compounded with the difficulty of detecting the products of old RT events not
under purifying selective pressure [11].

46 J. Jun et al.

3.2 Rates of Duplication

Rates of retrotransposition vary significantly over time and bursts of retrotrans-
position have been reported in several mammalian lineages [11,35]. The synony-
mous substitution rate (dS) profiles of the duplicates identified in this study
(Fig. 3) are shaped by the rate of generation of new duplicates, the mutation
rates along each lineage, the age of the genes identified in each interval, and our
ability to identify genes uniformly along each lineage. Pseudogenes, for instance,
become increasingly difficult to identify as they get older and diverge from their
original sequence. RT events in all three internal branches show clear peaks in
dS (Fig. 3A). For duplications occurring on the primate branch this peak oc-
curs around dS=0.1, while in rodents it occurs around dS=0.3 and in in-groups
around dS=0.6 ∼ 0.8. This pattern is consistent with bursts of retrotransposi-
tion in each of these lineages, a high mutation rate in the rodent lineage, and
the 36Myr gap between the speciation events leading to rodent and primate
lineages. Duplications occurring prior to the rodent/primate split display a dS
distribution significantly shifted toward higher dS values, consistent with the
greater age of these duplicates.

Segmental duplications show similar patterns in dS but a more uniform dis-
tribution of dS values than RT duplicates (Fig. 3B and C), suggesting that
segmental duplication is a more uniform process that occurs at less variable
rates than retrotransposition. It is interesting to note that the inferred age dis-
tribution of segmental duplication events is more uniform than that of the RT

Fig. 3. Histograms of average dS over pairs of Ensembl genes and pseudogenes. (A)
for clusters resulting from RT events on the primate, rodent, and the in-group branch
leading to primates and rodents, (B) for clusters resulting from SD events and RT
events on the primate lineages and (C) on the rodent lineages.

Estimating the Relative Contributions 47

duplicates but is not perfectly flat, suggesting that there may be some variation
in the rate of segmental duplication over evolutionary time.

3.3 Functional Preservation Rates

It is probable that young duplicate genes may escape inactivation for some time
despite lacking any apparent function. Since Ensembl gene predictions rely upon
the presence of an intact coding region rather than any evidence of selection
pressure upon the sequence, the gene clusters resulting from intact duplication
events should be comprised of both functional genes and duplicates that are not
functional, but have escaped inactivation. Evidence of purifying selection is often
used as evidence for function, and the ratio of synonymous to non-synonymous
changes (dN/dS) in the protein-coding region of a gene is a convenient way of
estimating this selective pressure [13]. For example, dN/dS ratio < 0.5 has been
used as stringent functionality criteria between retrotransposed genes and their
parental genes [6]. Also Torrents et al. showed that there is a clear discrimination
between dN/dS ratios of pseudogenes and those of functional genes, supporting
the use of dN/dS ratios as evidence of function [29]. Here we compute dN/dS
ratios between all pairs of descendants from each duplication event. This pairwise
approach is computationally rapid, is independent of precise reconstruction of the
entire gene tree, and allows for the detection of functionalized descendant clusters
of a duplication event that are not constrained relative to the parental genes.

Analysis of the dN/dS ratios of clusters derived from duplication events is
quite revealing. Fig. 4A compares clusters of RT duplication event descendants
with intact protein coding reading frames (intact) and clusters of RT duplicates
with inactivated reading frames (inactivated). Aggregate dN/dS values of a sig-
nificant portion of intact clusters overlap with the dN/dS values of inactivated
clusters in the region of the graph where dN/dS is greater than ∼ 0.5. Assum-
ing that the vast majority of inactivated clusters (clusters whose members have
inactivating mutations in their protein coding regions) are not under purify-
ing selection for protein coding function, those intact clusters that fall into this
range are unlikely to encode functional proteins, despite lacking any clearly in-
activating mutation. By inference, those clusters that display significantly lower
aggregate dN/dS values (< 0.5) than inactivated clusters are likely to be under
stabilizing selection for protein coding function.

Panels B through D of Fig. 4 compare dN/dS values of duplicate clusters
derived from RT and SD events on each of the three internal branches of the
mammalian tree. In the oldest internal branch of the tree (in-group) very few
clusters generated by either duplication mechanism can be detected that are not
under some degree of purifying selection pressure. This is probably due to the
difficulty in identifying very old non-functional sequences. Such sequences are
expected to drift away from their parental sequence making identification in-
creasingly difficult with advanced age. Clusters derived from duplication events
along the rodent branch have a bimodal distribution of dN/dS ratio resulting
from RT and SD events that gave rise to putatively functional gene copies (ag-
gregate dN/dS values < 0.5), and clusters with no clear evidence of stabilizing

48 J. Jun et al.

Fig. 4. (A) Histograms of average dN/dS ratio over pairs of Ensembl genes for clus-
ters resulting from intact RT events and average dN/dS ratio over pairs of genes and
pseudogenes for clusters resulting from inactivated RT events on the rodent lineage.
Histograms of average dN/dS ratio over pairs of Ensembl genes for clusters resulting
from intact SD events and RT events on the (B) in-group branch leading to primates
and rodents, (C) rodent, and (D) primate.

selective pressure. Duplication events along the primate branch gave rise to clus-
ters with more uniformly distributed aggregate dN/dS values spanning the entire
range of measurements. This is likely to be a reflection of the relatively short
period of time these new genes have been under purifying selection and is con-
sistent with the relatively low dS values of duplicates detected along this branch
(Fig. 3B).

3.4 Distribution of Duplication Events within the Mammalian Tree

The total number of RT and SD duplication events detected in this study is
illustrated in Fig. 2. Along each branch the number of events giving rise to clus-
ters with evidence of purifying selective pressure on their protein coding regions
is in bold typeset, while the total number of events detected is in denominators.
From these numbers it is clear that that we detect far more RT events than SD
events, but that far fewer of these events give rise to functional protein coding
genes than their SD counterparts. Analysis of the internal branches individually
reveals possible differences in the relative probability of these events giving rise
to functional genes in different lineages. In the most basal branch shared by
rodents and primates there is a slight excess of functional SD events over func-
tional RT events, while the two mechanisms appear to contribute equal numbers
of functional events in the rodent lineage. The primate and rodent branches
show similar rates of assigned SD events, but in primates fewer of these events
give rise to functional descendants (Table 1). A decreased rate of functionaliza-
tion is apparent in the RT events on the primate lineage. Despite an RT event
rate nearly twice that seen in rodents, the number of functional RT events in
primates is only ∼ 25% greater than that in rodents.

Estimating the Relative Contributions 49

Table 1. Rates of duplication events for rodent and primate lineages.

Events per SD events RT evnets
million yrs Assigned Intact Functional Assigned Intact Functional

Rodents 1.76 1.56 0.96 10.4 1.42 0.92
Primates 1.87 1.31 0.62 20.7 3.41 1.21

4 Discussion

4.1 Identification and Characterization of Gene Duplications
During Mammalian Evolution

Identifying gene duplication events and placing them in a phylogenetic frame-
work depends upon sensitive identification of duplicate copies, reliable cluster-
ing of orthologs, and differentiating between lineage specific gene loss events and
more recent duplications. To identify groups of duplicated sequences we combine
Ensembl gene predictions with Pseudopipe pseudogene identification. Combin-
ing predicted genes and pseudogenes in our gene families significantly reduces
the complexity of placing duplication events on the phylogenetic tree; gene loss
events are represented by pseudogenes and need not be inferred. Of course, this
approach is less effective as pseudogenes age and become more difficult to detect
deep in the tree. Undetected gene loss events deeper in the tree may lead to mis-
assignment of some duplication events to younger branches and a consequent
underestimation of the age of these gene families. But using local synteny to
help classify duplication events appears to work relatively well for the species
analyzed in this study.

Once duplicated genes have been identified and assigned to large gene fam-
ilies, clusters of orthologs within those families must be constructed to infer
the time of the duplication event that gave rise to each cluster. Our cluster-
ing algorithm uses both the protein-coding information embedded in the En-
sembl gene family assignments, and the local genome structure surrounding
duplicate copies, to differentiate between DNA and RNA based duplications
and to order successive segmental duplication events. This method is effective
because random insertion of a retrocopied cDNA into the genome is very un-
likely to recreate any significant synteny with orthologs or paralogs (data not
shown). The very low false-positive rate associated with measures of local syn-
teny means that genes that share synteny with paralogs are almost certainly
the result of segmental duplications regardless of intron content. Therefore this
method is unlikely to misclassify RT duplicates as segmental duplications. Seg-
mental duplications, however, can lose synteny to their paralogs over time [10,19],
which may result in some segmental duplications being mis-assigned to the RT
class. To account for this we use conventional intron content criteria [32] to
further discriminate between non-syntenic DNA based duplications and RT du-
plicate copies. Duplicate pairs that maintain synteny with their paralog are most
likely DNA based, while non-syntenic paralogs with significant intron loss are

50 J. Jun et al.

likely RT duplicates. Comparison with other studies identifying RT duplicates in
mammalian genomes suggest that using synteny criteria in addition to intron
based criteria improves the reliability of RT duplicate classification and that
duplications characterized as RT duplicates on the basis of intron content alone
may in fact be SD duplicates.

While the gradual degradation of synteny can create problems for placing du-
plication events on a phylogenetic tree, it conversely enables the differentiation
of successive segmental duplication events. Gene families generated by rounds
of segmental duplication can be difficult to classify into definitive orthologous
groups using protein-coding sequences alone. By examining flanking gene con-
tent, however, orthologous groups of paralogs can often be clearly resolved and
iterative DNA based duplications placed on the phylogenetic tree. As a result we
can see that while synteny decays over time, dN/dS values may also decrease,
reflecting the prolonged influence of stabilizing selection.

Detection of duplicate genes will always depend strongly on the depth and qual-
ity of genome annotation. This fact is reflected in our results in the highest number
of duplicates detected in the two most well annotated genomes in the study, human
and mouse. While it is difficult to predict how many duplicates have been missed
in current genome annotations, estimates of duplication rates from the most well-
annotated genomes are now judged to be quite accurate [4,22,32]. The consistency
of these estimates across the tree suggests that the number of duplications events
is not highly variable between these species, but definitive demonstration of that
finding must await further annotation (see also [5]).

4.2 Rates of Duplication

Lineage specific gene duplication, by retrotransposition or segmental duplica-
tion, is a major force in the evolution of differences between genomes. Thou-
sands of new genes have been born over the course of mammalian evolution,
and while not all of these new genes live, they provide significant quantities of
raw material for species-specific evolution and account for many of the known
differences between closely related mammalian genomes [5]. Retrotransposition,
in particular, appears to be peppering the genome with large numbers of dupli-
cate retrocopies that can act as insertional mutagens [12], new duplicate genes
[32], and siRNA’s [28,33]. Analysis of retrotransposon activity during vertebrate
evolution shows strong peaks of activity [15] and it is therefore not surpris-
ing that RT duplication of genes shows similar peaks in birth rates. Segmental
duplications, however, are not expected to be dependant on retrotransposon du-
plication machinery and appear to occur at a more stable rate. Consistent with
these expectations, the age profiles of the segmental duplications identified in
our study are more broadly distributed than the RT age profiles, but interest-
ingly, they are not perfectly uniform over time and may indicate of bursts of
segmental duplication activity in the evolutionary history of these genomes (see
also [2,24]).

Estimating the Relative Contributions 51

4.3 The Fate of Newly Duplicated Genes

At the moment a newly duplicated gene is born it is presumed to be an exact
copy of the duplicated portion of the parental gene (cDNA for retrocopies;and
introns, exons, and flanking material for segmental duplicates). Over time, how-
ever, mutation, coupled with selection, leads to the divergence of the new copy’s
sequence from its parent/paralog. The progressive aging of a duplicate is revealed
in its dS profile, as we move deeper on the tree, dS values between duplicate
pairs become progressively larger, reflecting the age of the duplications. If a new
duplicate is functional, purifying selection will serve to remove deleterious non-
synonymous mutations from the population, and the ratio of non-synonymous
to synonymous changes (dN/dS) will diverge from that of non-functional copies.
Full resolution of the degree of purifying selective pressure however, takes time,
and estimating this pressure on young duplicates can be difficult. Indeed, we
find significant separation between putative functional and non-functional de-
scendants of a duplication event in populations of genes that have had sufficient
time for this difference to become apparent (see the rodent branch Fig. 4A and
C). For the young primate branch the divergence between functional and non-
functional descendants is less clear. At virtually all time-points, however, there
are duplicates that have not yet been inactivated, but also show no evidence of
purifying selection on their protein coding sequence. Whether this is the result
of copies evading inactivation simply due to chance, or the reflection of some
other phenomenon is unknown. We also observe the converse phenomenon, old
copies that appear to have dN/dS ratios consistent with purifying selection, but
inactivating mutations in their protein-coding region. This could be the result
of recent inactivating mutations after long periods of purifying selection, or the
result of purifying selection acting on fragments of the original protein coding
sequence.

While the general effects of time, mutation, and selective pressure discussed
above apply to all new duplicates, we wondered if RT duplicates and SD du-
plicates would show different degrees of purifying selective pressure. Interest-
ingly, in age-matched populations of segmental and retrotransposed duplicates,
there is no dramatic difference in selection pressure on genes born by these
two mechanisms (Fig. 4). What is most clearly different between these two
populations is the proportion of copies that show evidence of purifying selec-
tive pressure. Of the duplication events assigned to the branches leading to
primates and rodents, only about six percent (150/2,304) of RT events give
rise to duplicates showing evidence of purifying selection, while forty percent
(101/249) of SD events appear to generate functional descendants (Fig. 2). The
very high rate of RT events coupled with the very low rate of functionaliza-
tion of gene copies generated by these events, and the lower rate of SD events
with much higher rate of descendant gene functionalization, results in nearly
equal contributions of new genes to eutherian genomes by each of these two
mechanisms.

52 J. Jun et al.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Bailey, J.A., Eichler, E.E.: Primate segmental duplications: crucibles of evolution,
diversity and disease. Nat. Rev. Genet. 7(7), 552–564 (2006)

3. Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams,
M.D., Myers, E.W., Li, P.W., Eichler, E.E.: Recent segmental duplications in the
human genome. Science 297(5583), 1003–1007 (2002)

4. International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature 431(7011), 931–945 (2004)

5. Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., Hahn, M.W.: The evolution
of mammalian gene families. PLoS ONE 1, e85 (2006)

6. Emerson, J.J., Kaessmann, H., Betran, E., Long, M.: Extensive gene traffic on the
mammalian x chromosome. Science 303(5657), 537–540 (2004)

7. Fortna, A., Kim, Y., MacLaren, E., Marshall, K., Hahn, G., Meltesen, L., Brenton,
M., Hink, R., Burgers, S., Hernandez-Boussard, T., Karimpour-Fard, A., Glueck,
D., McGavran, L., Berry, R., Pollack, J., Sikela, J.M.: Lineage-specific gene dupli-
cation and loss in human and great ape evolution. PLoS Biol. 2(7), E207 (2004)

8. Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M.,
Clarke, L., Coates, G., Cox, T., Cunningham, F., Curwen, V., Cutts, T., Down,
T., Durbin, R., Fernandez-Suarez, X.M., Gilbert, J., Hammond, M., Herrero, J.,
Hotz, H., Howe, K., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D.,
Keenan, S., Kokocinsci, F., London, D., Longden, I., McVicker, G., Melsopp, C.,
Meidl, P., Potter, S., Proctor, G., Rae, M., Rios, D., Schuster, M., Searle, S.,
Severin, J., Slater, G., Smedley, D., Smith, J., Spooner, W., Stabenau, A., Stalker,
J., Storey, R., Trevanion, S., Ureta-Vidal, A., Vogel, J., White, S., Woodwark, C.,
Birney, E.: Ensembl 2005. Nucleic Acids Res. 33, 447–453 (2005)

9. Hurley, I., Hale, M.E., Prince, V.E.: Duplication events and the evolution of seg-
mental identity. Evol. Dev. 7(6), 556–567 (2005)

10. Huynen, M.A., Bork, P.: Measuring genome evolution. Proc. Natl. Acad. Sci.
USA 95(11), 5849–5856 (1998)

11. Marques, A.C., Dupanloup, I., Vinckenbosch, N., Reymond, A., Kaessmann, H.:
Emergence of young human genes after a burst of retroposition in primates. PLoS
Biol. 3(11), e357 (2005)

12. Mills, R.E., Bennett, E.A., Iskow, R.C., Devine, S.E.: Which transposable elements
are active in the human genome? Trends Genet. 23(4), 183–191 (2007)

13. Nekrutenko, A., Makova, K.D., Li, W.H.: The k(a)/k(s) ratio test for assessing the
protein-coding potential of genomic regions: an empirical and simulation study.
Genome Res. 12(1), 198–202 (2002)

14. Ohno, S.: Evolution by gene duplication. Allen and Unwin, London (1970)
15. Ohshima, K., Hattori, M., Yada, T., Gojobori, T., Sakaki, Y., Okada, N.: Whole-

genome screening indicates a possible burst of formation of processed pseudo-
genes and alu repeats by particular l1 subfamilies in ancestral primates. Genome
Biol. 4(11), R74 (2003)

16. Petrov, D.A., Hartl, D.L.: Patterns of nucleotide substitution in drosophila and
mammalian genomes. Proc. Natl. Acad. Sci. USA 96(4), 1475–1479 (1999)

17. Potrzebowski, L., Vinckenbosch, N., Marques, A.C., Chalme, F., Jègou, B., Kaess-
mann, H.: Chromosomal gene movements reflect the recent origin and biology of
therian sex chromosomes. PLoS Biol. 6(4), e80 (2008)

Estimating the Relative Contributions 53

18. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler,
H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L.,
Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDon-
ald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K.,
Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F.,
Zhang, J., Zerjal, T., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C.,
Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E.:
Global variation in copy number in the human genome. Nature 444(7118), 444–454
(2006)

19. Rocha, E.P.: Inference and analysis of the relative stability of bacterial chromo-
somes. Mol. Biol. Evol. 23(3), 513–522 (2006)

20. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable
interkingdom conservation of intron positions and massive, lineage-specific intron
loss and gain in eukaryotic evolution. Curr. Biol. 13(17), 1512–1517 (2003)

21. Sakai, H., Koyanagi, K.O., Imanishi, T., Itoh, T., Gojobori, T.: Frequent emergence
and functional resurrection of processed pseudogenes in the human and mouse
genomes. Gene. 389(2), 196–203 (2007)

22. She, X., Cheng, Z., Zollner, S., Church, D.M., Eichler, E.E.: Mouse segmental
duplication and copy number variation. Nat. Genet. (2008)

23. She, X., Jiang, Z., Clark, R.A., Liu, G., Cheng, Z., Tuzun, E., Church, D.M.,
Sutton, G., Halpern, A.L., Eichler, E.E.: Shotgun sequence assembly and recent
segmental duplications within the human genome. Nature 431(7011), 927–930
(2004)

24. She, X., Liu, G., Ventura, M., Zhao, S., Misceo, D., Roberto, R., Cardone, M.F.,
Rocchi, M., Green, E.D., Archidiacano, N., Eichler, E.E.: A preliminary compar-
ative analysis of primate segmental duplications shows elevated substitution rates
and a great-ape expansion of intrachromosomal duplications. Genome Res. 16(5),
576–583 (2006)

25. Shemesh, R., Novik, A., Edelheit, S., Sorek, R.: Genomic fossils as a snap-
shot of the human transcriptome. Proc. Natl. Acad. Sci. USA 103(5), 1364–1369
(2006)

26. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman and Company,
San Francisco (1973)

27. Svensson, O., Arvestad, L., Lagergren, J.: Genome-wide survey for biologically
functional pseudogenes. PLoS Comput. Biol. 2(5), e46 (2006)

28. Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi,
S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R.M., Hannon, G.J.:
Pseudogene-derived small interfering RNAs regulate gene expression in mouse
oocytes. Nature 453(7194), 534–538 (2008)

29. Torrents, D., Suyama, M., Zdobnov, E., Bork, P.: A genome-wide survey of human
pseudogenes. Genome Res. 13(12), 2559–2567 (2003)

30. Ureta-Vidal, A., Ettwiller, L., Birney, E.: Comparative genomics: genome-wide
analysis in metazoan eukaryotes. Nat. Rev. Genet. 4(4), 251–262 (2003)

31. Van de Peer, Y., Taylor, J.S., Meyer, A.: Are all fishes ancient polyploids? J. Struct.
Funct. Genomics 3(1-4), 65–73 (2003)

32. Vinckenbosch, N., Dupanloup, I., Kaessmann, H.: Evolutionary fate of retroposed
gene copies in the human genome. Proc. Natl. Acad. Sci. USA 103(9), 3220–3225
(2006)

54 J. Jun et al.

33. Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S.,
Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M.A., Sakaki,
Y., Sasaki, H.: Endogenous siRNAs from naturally formed dsRNAs regulate tran-
scripts in mouse oocytes. Nature 453(7194), 539–543 (2008)

34. Yang, Z.: Paml: a program package for phylogenetic analysis by maximum likeli-
hood. Comput. Appl. Biosci. 13(5), 555–556 (1997)

35. Zhang, Z., Carriero, N., Gerstein, M.: Comparative analysis of processed pseudo-
genes in the mouse and human genomes. Trends Genet. 20(2), 62–67 (2004)

36. Zhang, Z., Carriero, N., Zheng, D., Karro, J., Harrison, P.M., Gerstein, M.: Pseu-
dopipe: an automated pseudogene identification pipeline. Bioinformatics 22(12),
1437–1439 (2006)

Discovering Local Patterns of Co-evolution

Yifat Felder1,�� and Tamir Tuller1,2,�,��

1 School of Computer Science
Tel Aviv University

{felderyi,tamirtul}@post.tau.ac.il
2 Department of Molecular Microbiology and Biotechnology

Tel Aviv University

Abstract. Co-evolution is the process in which a set of orthologs ex-
hibits a similar or correlative pattern of evolution. Co-evolution is a pow-
erful way to learn about the functional interdependencies between sets of
genes and cellular functions, about their complementary and backup re-
lations, and more generally, for answering fundamental questions about
the evolution of biological systems.

Orthologs that exhibit strong signal of co-evolution in part of the
evolutionary tree may show mild signal of co-evolution in other parts
of the tree. The major reasons for this phenomenon are noise in the
biological input, genes that gain or lose functions, and the fact that some
measures of co-evolution relate to rare events such as positive evolution.
Previous works in the field dealt with the problem of finding sets of genes
that co-evolved along an entire underlying phylogenetic tree, without
considering the fact that often co-evolution is local.

In this work, we describe a new set of biological problems that
are related to finding patterns of local co-evolution. We discuss their
computational complexity and design algorithms for solving them.
These algorithms outperform other bi-clustering methods as they are
designed specifically for solving the set of problems mentioned above.
We use our approach to trace the co-evolution of fungal and Eukaryotic
genes at a high resolution across the different parts of the corresponding
phylogenetic trees. Our analysis shows that local co-evolution is a
wide-scale phenomenon.

Keywords: Co-evolution, evolution rates, gene copy number, gene dele-
tion and duplication, functional ontology, bi-clustering, systems biology.

1 Introduction

Co-evolution is the process by which a set of orthologs exhibits a similar or a
correlative pattern of evolution. Co-evolution can be measured in various ways,
the most common are similarity in absolute evolutionary rate (ER1) [12, 17, 20],

� Corresponding author.
�� Y.F. and T.T contributed equally to this work.
1 In this work we used dN/dS as an estimate of evolutionary rate.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 55–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 Y. Felder and T. Tuller

correlative ER [9, 14], and similarity in the pattern of protein presence in the
proteomes of a set of organisms [16, 18, 27].

Detecting co-evolving sets of orthologs is an important matter since physically
interacting proteins [9, 14] and functionally related proteins [7, 8, 17, 20] tend to
co-evolve. Thus, an appropriate analysis of co-evolving genes can lead to a better
understanding of the evolution of various cellular processes and gene modules
(e.g. see [15]).

The most famous approach for detecting co-evolution is the phylogenetic pro-
files [16, 18, 27]. It searches groups of orthologs with similar phyletic patterns.
The main disadvantage of this approach is the fact that it totally ignores the
topology of the organisms’ evolutionary tree. A similar measure is the Propen-
sity for Gene Loss (PGL) in evolution [7, 8, 11]. Genes with lower PGL have
lower ER and tend to be essential for the organism viability. It has been proven
recently [8] that orthologs with correlative PGL tend to be functionally related.

Another related measure for evolutionary distance is the difference between
the average ER of pairs of orthologs [12, 17, 20]. Using this measure Marino et
al. showed that there is a strong connection between gene evolutionary rates and
function [17].

All previous approaches for detecting co-evolution have not considered the fact
that gene modules can exhibit strong patterns of co-evolution in some parts of
the evolutionary tree while exhibiting a very weak signal of co-evolution in other
periods of their evolution. There are a few main reasons for this phenomenon.

First, evolving genes may gain or lose functions (see e.g. [10]); loss or gain
of a new function can move an orthologous from one co-evolving module to
another one. Second, the analyzed biological data may be noisy or partial in
some portions of an evolutionary tree while it can have higher quality in other
parts. In such cases, searching sets of orthologs with similar evolution along the
entire phylogenetic tree may result in high false negative rates. Third, there are
co-evolutionary problems that are local by definition. For example, genes tend
to undergo positive selection in a small fraction of their history (see e.g. [2]).
Thus, if we define co-evolution as a process in which a set of orthologs undergo
positive selection together, we should not expect that such type of co-evolution
will span over the entire phylogenetic tree.

The goal of this work is to study the Local Co-Evolutionary problem. Namely,
given a phylogenetic tree and an evolutionary pattern of orthologous sets along
the evolutionary tree we aim to find sub-sets of orthologs with similar evolution-
ary patterns along subtrees of the evolutionary tree (see Figure 1 C.). We for-
malize a new set of Local Co-Evolutionary problems, study their computational
hardness and describe algorithms and heuristics for solving them. Simulation
study show that these algorithms give much better performances than popular
bi-clustering algorithms for gene expression. Finally, we generate three relevant
biological datasets which include ER and gene Copy Number (CN) of thousands
of orthologs across evolutionary trees with dozens of nodes, and use our method
for analyzing them.

Discovering Local Patterns of Co-evolution 57

Edge Orthologs Labelling 1

Edge Orthologs Labelling 5

Edge Orthologs Labelling 6

(h,k) (i,k) (c,i) (d,i)(b,h) (k,i)Evolutionary Rate

Edge

Edge Orthologs Labelling 2

Edge Orthologs Labelling 3

Edge Orthologs Labelling 4

a b c d e f g

h i j

k

l

1 2 1 1 0 0 1

2 2 1

2

1

A. B. C.

0.1

1.5

0.3

1

0.2 0.4

0.6

0.2
0.1

0.7
0.1

Fig. 1. A. A hypothetic example of a node orthologous labelling which includes gene
copy number in each node of the evolutionary tree. B. A hypothetic example of an
edge orthologous labelling which includes ER along each edge of the evolutionary tree.
C. The goal of the local co-evolutionary problem is to find large sets of orthologs that
have similar pattern of evolution across large subtrees of the evolutionary tree.

In each of the three datasets, we found hundreds of orthologous sets that ex-
hibit local co-evolution. Large fractions of these sets were functionally enriched
and fitted our knowledge regarding the evolution of the studied organisms. How-
ever, as our approach suggests a new set of tools for analyzing co-evolution, the
resolution and the abundance of our analysis are significantly higher than the
results reported in previous studies.

2 Definitions and Preliminaries

Let T = (V, E) be a tree, where V and E are the tree nodes and tree edges
respectively. In this work we consider rooted binary phylogenetic trees (i.e. the
degree of each node in the tree is 1, 2, or 3), and all the trees described in this
work are species trees. A node of degree 1 is named a leaf, a node with degree
3 is named an internal node, and the root has degree 2. A tree T ′ is a subtree
of T if it is a connected subgraph in T . We denote such a relation by T ′ ⊆ T .
Note that by the above definition an internal node of a tree T can be a leaf in
the subtree T ′ ⊆ T .

A Node Orthologous Labelling (NOL) of a tree T , is a set of labelling (real
numbers) for each of the nodes in T , an Edge Orthologous Labelling (EOL)
for a tree T , is a set of labellings for each of the edges in T (see Figure 1).
An Orthologous Labelling (OL, i.e. a NOL or EOL) of a tree is named the
evolutionary pattern along the tree.

Let S denote a set of OLs in T , and let S′ be a subset of S. Let Dc(S′, T ′)
denote a measure for co-evolution along a subtree, T ′ ⊆ T . Such measures return
a real positive number which reflects how similar is the co-evolution of the OLs
from S′ along the subtree T ′ (0 reflects an identical evolution). Formally, we deal
with versions of the following problem:

Problem 1. Local Co-Evolution
Input: A phylogenetic tree, T = (V, E), a set of NOLs or EOLs, S = [S1, .., Sm],
three natural numbers, n′, m′, a real number, d, and a measure of co-evolution,
Dc(·, ·).

Question: Is there a subtree T ′ = (V ′, E′) ⊆ T with |E′| = n′, and a subset
S′ ⊆ S with |S′| = m′, such that Dc(S′, T ′) ≤ d ?

58 Y. Felder and T. Tuller

In the rest of this section we describe a few examples of NOLs and EOLs, and
give a few examples of measures of co-evolution.

In this work, we analyzed one NOL:
(1) Gene copy number of orthologs, which is the number of copies of a
gene from a certain orthologous group in each node of the evolutionary tree.
In general, we can deal both with absolute values and discrete values of gene
copy numbers. In the discrete case, we are only interested whether a certain
orthologous appears or not in each node of the evolutionary tree and not in
the number of times it appears, while in the absolute value we do consider the
number of times each orthologous appears in each node of the evolutionary tree.

We also analyzed two EOLs:
(1) Evolutionary rate (ER). In this work we used the non-synonymous substi-
tution rate, dN , divided by the synonymous substitution rate, dS (i.e. dN/dS)
as an estimator of the ER. We examined absolute, discrete, and relative values
of dN/dS. The absolute case is dN/dS (a positive real number) without addi-
tional processing. In the discrete case, we only consider three possibilities: ER
> 1 (positive selection, dN/dS > 1), ER ≈ 1 (neutral selection, dN/dS ≈ 1),
or ER < 1 (purifying selection, dN/dS < 1). In the relative case, we perform
an additional normalization of the ERs of each orthologous group by comparing
them to the ERs of other orthologous groups. This is done by computing for
each edge of the tree the rank of the ER of an orthologous group among the ERs
of all orthologous group.

(2) Change in orthologous gene Copy Numbers (CN) along the tree
edges. In this case, we can check the exact changes or only the direction of the
changes (i.e. if the copy number increases, decreases, or does not change along
an edge).

We analyzed the following measures of co-evolution (Figure 2)2:
(1) Dc1(S′ = [S′

1,S′
2, ..,S′

f],T
′) is the maximal L1 norm between all the pairs

of S′
1, S

′
2, .., S

′
f along the evolutionary subtree T ′. Dc1 measures the similarity

of the absolute values of the OLs (see Figure 2 A.). Thus, orthologs that have
similar ERs along each branch of T ′ will have a significantly low Dc1.

(2) Dc2(S′ = [S′
1,S′

2, ..,S′
f],T

′) = 1−|r|, where r denotes the minimal Spear-
man correlation among all pairs of the OL of S′

1, S
′
2, .., S

′
f along the edges or

nodes of T ′. Orthologs can differ in their average ER but exhibit similar fluc-
tuations in their ER (see Figure 2 B.). Dc1 can not discover such pattern of
co-evolution but Dc2, as it finds sets of orthologs with correlative pattern of
evolution, is suitable for this task.

(3) Dc3(S′ = [S′
1,S′

2, ..,S′
f],T

′ = (E′,V′)) =
|E′| − |{e ∈ E′ : (S′

1,e = �) ∧ (S′
2,e = �) ∧ .. ∧ (S′

f,e = �)}| where � is a certain
labelling. This measure is used for finding a large subtree and a set of orthologs
with identical labelling along most of this subtree (see Figure 2 C.).

2 We usually give examples that are related to ERs but with the appropriate changes
all the measures can be implemented on NOLs and on labellings that are related to
CNs.

Discovering Local Patterns of Co-evolution 59

DC4

(h,k) (k,l) (l,m) (m,n)

OL1

ER
Edge

OL2

OL3

OL4

 D.

~

~

~

~

(n,i)
(n,i) (n,j) (j,d) (j,c)

OL1

ER
Edge

OL2

OL3

OL4

A. DC1

OL'1

ER
Edge

OL'2

OL'3

OL'4

(h,k) (g,k) (k,l) (l,f)

 B. DC2

abcdefgh

ijk
l

E.
m

n
(l,m) (m,e) (m,n) C.

DC3

OL''1
ER

Edge

OL''2

OL''3

OL''4

1 1 1 00
1 1 1 01

1 1 1 10
1 1 1 00

Fig. 2. Illustration of the four measures of co-evolution (A. Dc1, B. Dc2, C. Dc3 and
D. Dc4) along a hypothetical evolutionary tree (E.).

In this work, we used this measure for finding subtree where a set of orthologs
undergo positive selection (i.e. ER > 1) together. To this end, we first performed
a two levels discretization of the ERs; one discrete level was assigned to the ERs
above 1 and the second discrete level was assigned to the ERs below 1.

(4) Dc4(S′,T′): In the case of Dc4(S′, T ′), we want to find a path along the
evolutionary tree (i.e. T ′ is a path), and a set of OLs, S′, that have similar
monotonic/non-monotonic decreasing/increasing evolutionary pattern along
the path (see Figure 2 D.). Dc4(S′, T ′) = d denotes that the maximal number
of components of an orthologous labelling, Si ∈ S′ that should be changed for
fitting it to the pattern that the path induces, is less than d. This measure can
be useful for discovering modules of orthologs that exhibit together acceleration
or deceleration in their ER due to speciation.

3 Hardness Issues

This section deals with hardness issues which are related to the Local Co-
Evolutionary problem. We show that some versions of the problem are NP-hard,
but in practice it seems that the Local Co-Evolutionary problem has a shorter
running time than the bi-clustering problem which is highly used in the context
of gene expression analysis. Furthermore, we show that there are versions of
Local Co-Evolutionary problem that have a fixed-parameter tractable (FPT) or
that are polynomial. Due to lack of space, most of the proofs in this section are
deferred to the full version of this paper.

A bi-clustering is a subset of genes and a subset of conditions with the prop-
erty that the selected genes are co-expressed (according to some measure of
co-expression) in the selected conditions. Some versions of the bi-clustering prob-
lem are NP-hard (see for example [5, 6]). Let Db(Sg, Sc) denote a measure of
co-expression of a set of genes, Sg, across a set of conditions, Sc. Formally, the
bi-clustering problem is defined as follows:

Problem 2. Bi-clustering
Input: A set M of k vectors of length � (each vector is related to one gene,
and each component of the vectors is related to one condition), a measure of
co-expression, Db(·, ·), two natural numbers, p, q, and positive real number c.
Question: Does the input include a set of p genes, Sg, and a set of q conditions,
Sc, such that Db(Sg, Sc) < c?

60 Y. Felder and T. Tuller

It is easy to see that the bi-clustering problem can be reduced to the Local
Co-Evolutionary problem on trees with unbounded degree.

Lemma 1. The bi-clustering problem can be reduced to the Local Co-
Evolutionary problem on trees with unbounded degree.

However, in this work we deal with binary trees. Unfortunately, the Local Co-
Evolutionary problem is NP-hard also for binary trees. We prove it by reduction
from the Balanced Complete Bipartite Subgraph problem that is known to be NP-
Complete [21]:

Problem 3. Balanced Complete Bipartite Subgraph
Input: A bipartite graph, G = (V1, V2, E), and a positive integer k.
Question: Are there two disjoint subset V ′

1 ⊆ V1, V
′
2 ⊆ V2 such that |V ′

1 | = |V ′
2 | =

k and for all v1 ∈ V ′
1 , v2 ∈ V ′

2 , (v1, v2) ∈ E.

Theorem 1. The Local Co-Evolution on binary trees is NP-hard.

Proof. We will prove theorem 1 by reduction from the Balanced Complete Bi-
partite Subgraph problem.

Given an input < G = (V1, V2, E), k > to the Balanced Complete Bipartite
Subgraph problem we will generate the following input to the Local Co-Evolution
problem, < T, S, n′, m′, d, Dc >:

– T is a tree with |V1| + |V2| edges, an edge for each v ∈ V1 ∪ V2.
– S = [S1, .., S|V1|+|V2|] includes |V1| + |V2| vectors of length |V1| + |V2| (i.e.

∀i|Si| = |V1|+ |V2|). A vector for each v ∈ V1 ∪V2, where ∀i,jSi,j = δ((i, j) ∈
E) (i.e. |S| is the distance matrix of G).

– n′ = |V1| + |V2|, m′ = k, d = |V1| + |V2| − k.
– As a distance measure we use Dc = Dc3.

=⇒ Suppose G contains a balanced complete bipartite subgraph of size k,
(V ′

1 , V ′
2) (i.e. the answer to the Balanced Complete Bipartite Subgraph prob-

lem with < G, k > is Y ES). By definition each pair of vertices in the V ′
1 share

k neighbors (the vertices in V ′
2), thus, all the k vectors of evolutionary patterns

that are related to the V ′
1 contain k common ′1′s (the vertices that are in V ′

2),
i.e. d = |V1| + |V2| − k, and thus the answer to the Local Co-Evolution problem
is Y ES.

⇐= Suppose the answer to the Local Co-Evolution problem with < T, S, n′ =
|V1| + |V2|, m′ = k, d = |V1| + |V2| − k, Dc3 > is Y ES. This means that there is
a set of k edge orthologous labellings that share k positions with ′1′ along the
tree T , thus G includes two sets of k vertices each, such that all the vertices in
one set (that is related to the k edge orthologous labellings) are connected to all
the vertices in the second set (that is related to the k positions), i.e. balanced
complete bipartite subgraph of size k.

Practically, due to the following lemma, it seems that the running time of the co-
evolutionary problem should be shorter than the running time of the bi-clustering
problem.

Discovering Local Patterns of Co-evolution 61

Lemma 2. [22] The number of subtrees in a tree with n nodes is about 1.48n.

For example, suppose that we are dealing with n conditions in the case of the
bi-clustering problem or tree of size n in the case of the Local Co-Evolutionary
problem. The number of subgroups of n conditions is 2n, while, by lemma 2,
the number of connected subtrees of a tree with n nodes is only about 1.48n.
In practice, this can make a big difference, for example, if n = 20 there are less
than 2, 542 connected subtrees while more than 106 subgroups of n conditions.

Similarly, considering a greedy procedure, there are at most n′ ways to expand
by one edge/node a subtree of size n′, while in the general bi-clustering case,
there are n − n′ such possibilities. This can make a big difference if n′ = o(1).

Finally, there are versions of the co-evolutionary problem that are polynomial.
For example, if we search exact co-evolution along paths (i.e. Dc4), or more
generally along subtrees with k leaves3 or k nodes. In this case, if k is constant,
the number of such subtrees is polynomial.

Lemma 3. The number of subtrees with k leaves in a tree with n nodes is less
than

(
n
k

)
.

Lemma 4. The number of subtrees with k nodes in a tree with n nodes is less
than (n − 1) · 2k · (k − 1)!.

We say that an evolutionary pattern along a subtree T ′ is supported by a set of
orthologous labellings, S′, if there is s ∈ S′ with that evolutionary pattern along
T ′. Suppose that each component of an OL can have one of α possibilities. In
this case, the number of possible evolutionary patterns that are supported by
at least one of the OLs, in a tree with n nodes and when the input includes |S|
OLs is less than min(|S| · 1.48n,

∑n
k=1(n− 1) · (k− 1)! ·αk). The left component,

is due to the fact that each of the 1.48n subtrees can have maximum of S
different evolutionary patterns, since each of the |S| labelling induces only one
pattern. The right components is an enumeration of all the possible patterns on
all possible subtrees with k nodes (0 < k ≤ n).

Thus, the problem of finding sets of OLs with the same pattern of evolution
along a subtrees of an evolutionary tree is a fixed-parameter tractable (FPT),
which is exponential in the size of the tree, n. If we are interested in paths, i.e.
subtrees with k = 2 leaves, this problem is polynomial since by lemma 3 there
are O(n2) paths, where each path can have at most |S| evolutionary pattern, a
total of |S| · n2 evolutionary patterns.

4 Methods

4.1 Heuristics and Algorithms

This section includes a brief description of the algorithms we developed for find-
ing local patterns of co-evolution. We designed two main algorithms. The first
3 Note that subtree with k leaves can includes O(n) nodes. One such example is when

the input tree is a path of length n/2 (two leaves, and n − 2 internal nodes), and
n/2 − 2 additional leaves that are connected to each of these n − 2 internal nodes
of the path, and when we seek co-evolution along paths (i.e. k = 2).

62 Y. Felder and T. Tuller

A. Input:

Tree Splitter

h
g i

j

A phylogenetic
 tree

OL1

OL2

OL3

OL5

OLn

OL4

OL6

OL7 . .

A set of
orthologous

labellings

a b c d e fTree Grower

OL71 OL21
OL452

OL80

OL79

OL40

OL321

OL71
OL452

OL80

OL79

OL40

OL321

OL6

OL5

OL62

OL3

OL6

OL5

OL71

OL80

OL62 OL79

OL21

OL40

OL321

OL452

a b

g
h

c

j

B.

a b

g

h

c

OL6

OL5

OL62

a b

g
h

c

j

i

C.

a b c d e f

h
g i

j

a b

g

h

c

a b

g

h

OL6

OL5

OL11

OL30

OL22 OL17

OL73

OL40

OL180

OL232

OL1

OL6

OL5

OL11

OL30

OL22 OL17

OL73

OL40

OL180

OL232

OL1
OL56

OL6

OL5

OL11

OL30

OL22 OL17

OL73

OL40

OL180

OL232

OL1OL56
OL820

Fig. 3. An illustration of the two algorithms. A. The input. B. The Tree Grower
algorithm. C. The Tree Splitter algorithm.

algorithm, Tree Grower starts with set of orthologs with similar patterns of
evolution along small subtrees, and expands this initial trees while possibly de-
creasing the set of orthologs (Figure 3 B.). The second algorithm, Tree Splitter,
first finds sets of orthologs with similar pattern of evolution along the entire in-
put tree, and recursively cuts edges from the initial tree while possibly increasing
the sets of orthologs (Figure 3 C.). Detailed description of the two algorithms
will appear in the full version of this paper.

The Tree Grower Algorithm. The first stage of the Tree Grower algorithm
included generating a collection of sets of OLs (seeds) that have a high co-
evolutionary score along a small subtree (e.g. a subtree with around log(n) nodes
or edges). The set of seeds was generated by the FPT procedure that we described
in the previous sections, or by implementing K-means [23] on the OLs that
are induced along each of the small subtrees. Next, the Tree Grower procedure
greedily grew solutions with larger subtrees that may have less OLs than in the
initial seeds.

Let fc(|E|, |S|) denote the running time for computing Dc(S, T). In the most
general case, the running time of the Tree Grower on an input tree T = (V, E),
a set of OLs, S, and initial set of seeds of size |H | is O((|E|+ |S|) · |S| · |E| · |H | ·
fc(|E|, |S|)).

The Tree Splitter Algorithm. In this case, by the FPT procedure and by
K-means we first generated a set of clusters of OLs along the entire input phylo-
genetic tree. Next, in each stage the Tree Splitter algorithm cut edges from the
subtree that was related to each cluster while greedily increasing the size of the
set of OLs that is related to the cluster.

Let K denote the initial number of clusters, the running time of Tree Splitter
is |K| · |S| · |E| · fc(|E|, |S|). The Tree Splitter algorithm is usually faster than
the Tree Grower.

Discovering Local Patterns of Co-evolution 63

4.2 P-Values and GO Enrichments

P-Values: upper bound, lower bound, and exact empirical p-values.
As the statistical nature of the problems mentioned in this work is not clear we
used few empirical p-values for evaluating co-evolving sets of OLs .

Empirical p-values for a co-evolving set of m′ OLs over subtrees of size n′,
when the input includes m OLs along a tree of size n, was computed by the
following permutation test: 1) Generate 1000 permutated versions of the input,
each permutated versions is a result of O(n · m) single permutations of the OLs
of the original input. 2) Implement the algorithms for finding co-evolving set on
these random inputs. 3) Compute the fraction of times the algorithms found a
co-evolving set with larger properties (m′ and n′) than the original one.

A raw but much faster empirical bounds on the p-value can be computed
based on the empirical estimation of the probability that two OLs have distance
score (co-evolutionary score) less than d on a tree with similar properties as T ′

(e.g. the same topology or the same number of edges/nodes). Let p denote this
empirical probability. Thus, since in a set of m′ OLs there are at least m′/2
independent pairs and no more than

(
m′

2

)
pairs of OLs, the upper and lower

bounds on the p-value are pm′/2 and p(m′
2) respectively.

GO-enrichment. GO enrichment of the co-evolving sets were computed using
the GO ontology of S. cerevisiae (downloaded from the Saccharomyces genome
database4) and H. Sapiens (downloaded from EBI - BioMart5). We used the
algorithm of Grossmann et al. [19] for detecting over-represented GO terms.

4.3 Implementation

The software for the algorithms (Tree Grower and Tree Splitter) was written in
C++, and the implementation run on regular PCs (Pentium M, 1400MHz with
512MB of RAM, and with Windows XP).

4.4 The Biological Inputs

We analyzed three biological datasets: 1) ER of 1, 372 orthologous sets (12, 348
genes) along the phylogenetic tree of nine yeasts (Figure 4 A.); we named this
dataset the yeast ER dataset. 2) Gene copy number of 6, 227 orthologous sets
(56, 043 genes) along the same phylogenetic tree of the nine yeasts (Figure 4
A.); we named this dataset the yeast CN dataset. 3) gene copy number of 4, 851
orthologous sets (33, 957 genes) along the phylogenetic tree of seven eukaryotes
(Figure 4 B.); we named this dataset the eukaryote dataset.

The preparation of these biological inputs included dozens of steps which are
depicted in Figure 5. In the case of the evolutionary rates datasets (Figure 5 A.),
the major stages included identifying the phylogenetic tree, generating sets of

4 http://www.yeastgenome.org/
5 http://www.biomart.org/

64 Y. Felder and T. Tuller

9. S. pombeA.

1. S. cerevisiae

2. S. bayanus

3. S. glabrata

4. K. lactis

5. D. hansenii

6. C. albicans

7. Y. lipolytica

8. A. nidulans

10

11

12

13

14
15

17

Hemiascomycota

Archeascomycota

Euascomycota

6. D. melaogastern

B.

2

8

12. E. cuniculi

1. A. thaliana

4. C. elegans

7. H. sapiens

10. S. cerevisiae

11. S. pombe

5

3

9

Plantae

Fungi

Animalia

16

13

Fig. 4. The phylogenetic trees of the analyzed biological datasets: A. The yeast
dataset, B. The eukaryote dataset.

orthologs without paralogs, aligning these sets, using maximum likelihood for re-
constructing the ancestral genes of these orthologs (the sequences at the internal
nodes of the phylogenetic tree), and using these orthologs and ancestral genes for
computing the dN/dS values along each branch of the phylogentic tree. These
dN/dS can be used as EOLs or can undergo normalization or descritization (as
we described in section 2).

In the case of gene copy numbers datasets (Figure 5 B.), the initial steps were
similar. However, in this case we used only the sets of orthologs that exhibit at

B. Find sets of
orthologous

D. Remove
paralogs

C. Find the
phylogenetic

tree

 E. Align each
 set (nucleotides

and AAs)

H. Reconstruct
ancestral

sequeunces

I. Reconstruct
ancestral tAI

A. Find tRNA
copy number
in each taxa

G. Reconstruct
ancestral tRNA
copy number.

F. Reconstruct
tree edge
lengths.

J. Calculate
dN/dS in each

branch

K. Adjust dN/dS for
selection on synonymous

 sites

L. Rank genes by
their adjusted dN/dS

A. Find sets of
orthologous

B. Find the
phylogenetic

tree

 E. Align each
 set and concatenate

the alignments

G. Reconstruct ancestral
copy number of each

protein.

F. Reconstruct
tree edge lengths.

C. Find copy number
of each protein

in each taxa

 D. Remove
paralogs

H. Analyze the vectors of
orthologous copy

numbers.

A. B.

Fig. 5. The various steps of the preprocessing of the biological inputs. A. The yeast
ER, B. The copy number datasets.

Discovering Local Patterns of Co-evolution 65

least one change in their corresponding gene copy number along the phylogenetic
tree. By maximum likelihood, we reconstructed the ancestral copy number for
each of these sets. The result of these steps is a set NOLs that can be further
processed or can be translated to EOLs (as we described in section 2).

Due to lack of space, the exact details regarding the preparation of the bio-
logical inputs are deferred to the full version of this paper.

5 Experimental Results

5.1 Synthetical Inputs

For evaluating the performances of our algorithms we designed the following
simulation:

1) We generated random trees with 12 - 52 nodes by random hierarchical
clustering of the trees’ leaves, and generated random sets of 1000 - 3000 OLs
that are related to these trees. The labellings were sampled from the uniform
distribution U [0, 3].
2) In these random inputs, we “planted” solutions, which are OLs (with 100 -
300 orthologs) that have high co-evolutionary score in large subtree (e.g. 5 -
20 nodes) of the input tree. We added additive noise with uniform distribution
U [−0.15, 0.15] to each component of the “planted” solutions.
3) We implement the two algorithms, Tree Grower and Tree Splitter, on these
inputs.
4) We compared the performances of the algorithms to two popular bi-clustering
algorithms (SAMBA [6] and the algorithm of Cheng and Church (C&C) [3]).
To this end, we used two measures of performances: False Positive (FP) rate,
which is the fraction of orthologs (OFP) or tree branches (BFP) in the output
that are not part of a “planted” solution, and False Negative (FN) rate, which
is the fraction of orthologs (OFN) or tree branches (BFN) in the ”planted”
solution that do not appear in output.

Figure 6 includes a summary of the simulation study. As can be seen, the perfor-
mances of our algorithms are very good and far exceed the performances of the
competing bi-clustering algorithms. For example, when considering all the syn-
thetical inputs, the average OFN, OFP, BFN, and BFP of the Tree Splitter are
0.002, 0.25, 0.07, and 0.14 respectively. For comparison, the average OFN, OFP,
BFN, and BFP of the algorithm of C&C are 0.52, 0.76, 0.16, and 0.61 respec-
tively. This result motivates designing algorithms that are specific for solving
the co-evolutionary problem, instead of using general bi-clustering algorithms.

Finally, our simulation showed that there are many inputs where Tree Splitter
outperform the Tree Grower algorithm. However, there are cases where the Tree
Grower gave better results. Thus, we employed both algorithms in the biological
analysis.

66 Y. Felder and T. Tuller

1

0.8

0.6

0.4

0.2

OFN OFP BFN BFP

n = 42

E
r
r
o

r
 R

a
te

0
OFN OFP BFN BFP

1

0.8

0.6

0.4

0.2

0

E
r
r
o

r
 R

a
te

n = 52 n = 32

E
r
r
o

r
 R

a
te

OFN OFP BFN BFP
0

1

0.8

0.6

0.4

0.2

0
OFP BFN BFP

0

0.2

0.4

0.6

0.8

1

n = 12

OFN

E
r
r
o

r
 R

a
te

Splitter
Grower
SAMBA
C&C

Fig. 6. Simulation study of the algorithms. The figure depicts the average OFP, OFN,
BFP, and BFN of the two algorithms (the Tree Grower and the Tree Splitter), and two
bi-clustering algorithms (SAMBA and C&C) for different sizes of input trees (n is the
number of nodes in the input trees). For each size of input trees we averaged the error
rates of 100 simulations.

5.2 Biological Inputs: Results and Discussion

In this section, we describe our main biological findings. The full lists of all the
co-evolving sets that were found along with their local co-evolutionary patterns,
and their functional enrichments will appear in the full version of the paper. A
summary of the results appears in Figure 7A. The fact that 10% - 56% of the
co-evolving sets that we found are functionally enriched is very encouraging, as
it demonstrates that our measures and algorithms are capable of detecting real
biological phenomena.

The biological datasets describe the evolution of diverse sets of organisms
and OLs, along different time ranges (see Figure 7 B.). The Eukaryote dataset
includes both multicellular and unicellular organisms and describes evolution
along 1642 million years. The yeasts are unicellular organisms that appeared 837
million years ago (see [1, 11] for the divergence times of the different phylogenetic
groups). The yeast ER dataset includes conserve OLs that have exactly one
ortholog in each organism while the yeast CN dataset includes OL with varying
number of ortholog in each organism (see section 4.4). Our analysis shows that

Eukaryotes

Yeasts

1642 MY

837 MY

Metabolism
mRNA processing

Signaling

Regulation

Translation

Cytokinesis
Cell cycle

Metabolism

Translation

Regulation

Gene expression

Transportation

DC4 DC3 DC2 DC1 Measure
Dataset

58 (14) 12 1394 (139) 258 (87) Yeast ER
83 (50) --- 236 (71) 382 (106) Yeast CN, EOL
94 (59) --- 239 (63) 190 (56) Yeast CN, NOL
34 (14) -- 176 (70) 114 (56) Eukaryote CN, EOL
32 (18) -- 170 (74) 94 (45) Eukaryote CN, NOL

A. B.

Fig. 7. A. Summary of the biological results. The number of local co-evolving groups
and the number of enriched co-evolving groups (in brackets) that were found in each
of the biological datasets according to each of the co-evolution measures. B. A global
view at the co-evolving functions (GO groups) in the yeast and the Eukaryote datasets,
and the appearance time of each of the analyzed biological groups.

Discovering Local Patterns of Co-evolution 67

 S. pombe

A.

S. cerevisiae

S. bayanus

S. glabrata

K. lactis

D. hansenii

C. albicans

 Y. lipolytica

A. nidulansTrc

Trl

GE

AAMP

NMP

AAMP,
GAMP,
MEP

EA

Abbreviations
PRM
RCP
RMP
RNM
RTD
TMP
Trc
Trl
TRP

Purine Ribonucleoside Metabolism
RNA Catabolic Process
rRNA Metabolic Process
Regulation of Nucleic Acid Metabolic
Regulation of Transcription, DNA-dependent
tRNA Metabolic Process
Transcription
Translation
Transcription from RNA Polymerase II

AAMP
DCP
EA
GAMP
GE
LCP
MEP
MMP
NMP

Amino Acid Metabolic Process
DNA Catabolic Process
Endopeptidase Activity
GPI Anchor Metabolic Process
Gene Expression
Lipid Catabolic Process
mRNA 3'-end Processing
mRNA Metabolic Process
Nucleotide Metabolic Process

DC1

DC2

DC3

DC4

Legend

ERCN

 D. melanogaster

C.
 E. cuniculi

 A. thaliana

C. elegans

 H. sapiens

S. cerevisiae

S. pombe

AAMP

PRM

AAMP

RMP,Trl,
AAMP

 S. pombe

B.

S. cerevisiae

 S. bayanus

S. glabrata

 K. lactis

 D. hansenii

 C. albicans

 Y. lipolytica

 A. nidulans

r

Trl

LCP

NMP

Trl,
GE

AAMP

Trl

MMP, Trc,
RMP, TRP

RCP, GE,
TMP

DCP,
RNM, RTD

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

11

12

13

14
15

16

17

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

11

12

13

1415

16

17

16

1.

6.

7.

4.

10.

11.

12.

5

9

3
13

8

2

Fig. 8. A detailed description of the co-evolving sets of OLs, in the three biological
datasets, that were enriched with metabolic and regulatory GO functions: A. Yeast ER,
B. Yeast CN , C. Eukaryote CN . We marked regions in the trees where we detected
co-evolving sets of OLs that are enriched with the aforementioned GO functions (see
the abbreviation list in the middle of the figure). We used different colors (see the
legend above) to distinguish between the different types of co-evolution. Dashed lines
correspond to CN based co-evolution (EOL or NOL), and continues lines correspond
to ER based co-evolution (EOL).

there are cellular processes, such as metabolism and regulation, that exhibit co-
evolution in all the datasets. Figure 7 B. depicts the enriched GO functions that
were found in the co-evolving sets of OLs in each of the datasets.

Figure 8 includes an intensive view on the co-evolution of the biological
processes that are related to metabolism and regulation in the three biologi-
cal datasets. The figure depicts the regions in the evolutionary trees where we

68 Y. Felder and T. Tuller

detected co-evolving sets of OLs that are enriched with metabolic and regula-
tory GO functions. This figure also includes information on the corresponding
measures of co-evolution that were used for detecting each of the co-evolving sets
of OLs.

The rest of this section includes a few highlights of our finding in each of the
biological datasets.

Yeast Copy Number and Evolutionary Rate. The two yeast datasets
are interesting since they enable us to compare the two types of co-evolution:
co-evolution via similar/correlative ER (see Figure 8 A.), and evolution via sim-
ilar/correlative gene copy number (see Figure 8 B.). Many metabolic cellular
functions (e.g. metabolism of amino acids), and cellular functions that are re-
lated to regulation (e.g. translation) exhibit local co-evolutionary pattern both
via changes in copy number and via changes in ER. Though the GO enrichments
that appear in Figure 8 A. and in Figure 8 B. are similar, it is important to note
that the OLs (and thus the co-evolving sets of OLs) in the two cases are com-
pletely different. This fact emphasizes the centrality of these processes in the
yeast evolution.

Previous works in the field that have dealt with translation and metabolism in
the yeast evolution (e.g. [24]) came into similar conclusions about the centrality
of these processes. They, however, have used completely different techniques (e.g.
the analysis of the tRNA adaptation index [24]).

We discovered two regions where many of the fungal genes underwent positive
selection (see Figure 8 A.). The larger set of OLs (554 orthologs) exhibits positive
selection along the branch (11, 12), this probably following the whole genome
duplication event that has occurred at this bifurcation [28]. This whole genome
duplication event probably served as a driving force underlying this burst of
positive selection, by relaxing the functional constraints acting on each of the
gene copies (see for example [25]). Another set of OLs (112 orthologs) exhibits
positive selection along the subtree with the nodes 13, 14, and 15 (see Figure
8 A.). The branch between nodes 13 and 14, leads to a subgroup (D. hansenii
and C. albicans) that evolved a modified version of the genetic code [4], and the
branch between nodes 13 and 15 leads to Y. lipolytica (which is a sole member
in one of the three taxonomical clusters of the Saccharomycotina [26]).

Eukaryote Copy Number. As mentioned, this biological dataset gives a wider
evolutionary view than the yeasts’ datasets. Cellular processes that are related
to metabolism, signaling, and mRNA processing exhibit co-evolution patterns
along this dataset (see Figures 7 B. and 8). One striking phenomenon is that
many of these co-evolving sets (87%) exhibited co-evolution (according to all
the measures of co-evolution) along the subtrees of the Animalia and Fungi, and
excluding the subtree of the Plantae. We believe that this phenomenon proves
that many gene modules changed their functionality after the split between the
Plantae and the two other groups (Animalia and Fungi).

Cases where homolog protein complexes in Plantae and Animalia have a rather
different functions in these two organism groups were reported in the past. For

Discovering Local Patterns of Co-evolution 69

example, the COP9 signalosome, a repressor of photomorphogenesis in Plantae,
regulates many developmental processes in Animalia [13]. Our analysis, however,
may suggest that this is a wide scale phenomenon.

Co-Evolution of Cellular Functions. The functional enrichments of the co-
evolving OLs can teach us about functional interdependencies between cellular
functions and about the co-evolution of cellular functions. We found many sub-
trees where sets of OLs that are enriched with various GO functions exhibited
co-evolution. In many cases the relations between the different GO functions
seemed trivial. For example, Translation and Gene expression, that exhibited a
copy number based co-evolution in the yeasts (Figure 8 B.) subtree that is under
internal node 12, are two biological processes that relate to producing proteins
or RNAs from the corresponding genes (DNA sequences).

However, there are more intriguing cases. For example, Translation and Amino
acid metabolic process that exhibited a copy number based co-evolution in the
Eukaryotes (Figure 8 C.) in the subtree that included nodes 1, 2, 3, 4, 5, and
8. The link between these two processes is not immediate and is probably not
direct. A possible explanation is that the evolution of the metabolism of various
Amino Acids (AA) changed the composition of the AA pool in the yeast cell.
These changes were followed by a corresponding evolution of the translation
machinery (e.g. the yeast tRNA copy numbers).

6 Conclusions

This work introduced a set of local co-evolutionary problems. As some of these
problems are NP-hard, we suggested two heuristics for solving them. We demon-
strated the biological significance of the local co-evolutionary problems through
the analysis of three biological datasets. We found that more than 90% of the
co-evolving sets of OLs that we found indeed exhibit local co-evolution (i.e.
co-evolution along part of the phylogenetic tree). This fact confirms that our
approach is desirable.

As a future work we intend to extend this work in three directions. First,
in this work we described two heuristics for solving co-evolutionary problems,
these heuristics gave very encouraging results in the simulation study. However,
as we believe that better algorithms are within reach. We plan to spend more
time designing faster and more accurate algorithms for solving these problems.
A related open problem is to find approximation algorithms for solving at least
some of the co-evolutionary problems mentioned in this work.

Second, due to lack of space, we focused in this work on four versions of the
Local Co-Evolutionary problem. However, we intend to use the concept that was
described here for solving both more specific queries (e.g. finding co-evolving
sets of OL along a subtree that includes at least one leaf) and more general ones
(e.g. a joint analysis of ER and copy number of orthologs across a phylogenetic
tree).

Third, generating biological inputs for local co-evolutionary problems is a
non-trivial task (see section 4.4) as it includes dozens of preprocessing steps

70 Y. Felder and T. Tuller

that should be performed properly. We plan to use our approach for studying
co-evolution across the entire tree of life. To this end, we intend to generate the
phylogenetic tree and the OLs of hundreds of organisms (Archaea, Bacteria, and
Eukaryota), and to analyze this input by our approach.

Acknowledgment

We would like to thank Prof. Eytan Ruppin and Prof. Martin Kupiec for helpful
discussions. T.T. was supported by the Edmond J. Safra Bioinformatics program
at Tel Aviv University and the Yeshaya Horowitz Association through the Center
for Complexity Science.

References

1. Benton, M.J., Donoghue, P.C.J.: Paleontological evidence to date the tree of life.
Mol. Biol. Evol. 24(1), 26–53 (2007)

2. Berbee, M., Taylor, J.: Systematics and evolution. In: McLaughlin, D., McLaughlin,
E., Lemke, P. (eds.) The Mycota, vol. VIIB, pp. 229–245. Springer, Berlin (2001)

3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. 8th Int. Conf.
Intell. Syst. Mol. Biol., pp. 93–103 (2000)

4. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., et al.: Genome
evolution in yeasts. Nature 430, 35–44 (2004)

5. Ben-Dor, A., et al.: Discovering local structure in gene expression data: The order-
preserving submatrix problem. J. Comput. Biol. 10(3-4), 373–384 (2003)

6. Tanay, A.: Discovering statistically significant biclusters in gene expression data.
Bioinformatics 18, S136–144 (2002)

7. Barker, D., et al.: Predicting functional gene links using phylogenetic-statistical
analysis of whole genomes. PLoS Comput. Biol. 1, 24–31 (2005)

8. Barker, D., et al.: Constrained models of evolution lead to improved prediction
of functional linkage from correlated gain and loss of genes. Bioinformatics 23(1),
14–20 (2007)

9. Juan, D., et al.: High-confidence prediction of global interactomes based on
genome-wide coevolutionary networks. PNAS 105(3), 934–939 (2008)

10. Ober, D., et al.: Molecular evolution by change of function. alkaloid-specific ho-
mospermidine synthase retained all properties of deoxyhypusine synthase except
binding the eif5a precursor protein. J. Biol. Chem. 278(15), 12805–12812 (2003)

11. Krylov, D.M., et al.: Gene loss, protein sequence divergence, gene dispensability,
expression level, and interactivity are correlated in eukaryotic evolution. Genome
Res. 13(10), 2229–2235 (2003)

12. Wall, D.P., et al.: Functional genomic analysis of the rate of protein evolution.
Proc. Natl. Acad. Sci. U.S.A. 102(15), 5483–5488 (2005)

13. Oron, E., et al.: Genomic analysis of cop9 signalosome function in drosophila
melanogaster reveals a role in temporal regulation of gene expression. Mol. Syst.
Biol. 3, 108 (2007)

14. Pazos, F., et al.: Correlated mutations contain information about protein-protein
interaction. J. Mol. Biol. 271, 511–523 (1997)

15. Wapinski, I., et al.: Natural history and evolutionary principles of gene duplication
in fungi. Nature 449, 54–65 (2007)

Discovering Local Patterns of Co-evolution 71

16. Wu, J., et al.: Identification of functional links between genes using phylogenetic
profiles. Bioinformatics 19, 1524–1530 (2003)

17. Marino-Ramirez, L., et al.: Co-evolutionary rates of functionally related yeast
genes. Evolutionary Bioinformatics, 2295–2300 (2006)

18. Bowers, P.M., et al.: Prolinks: a database of protein functional linkages derived
from coevolution. Genome Biology 5, R35(2004)

19. Grossmann, S., et al.: An improved statistic for detecting over-represented gene on-
tology annotations in gene sets. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner,
P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 85–98.
Springer, Heidelberg (2006)

20. Chena, Y., et al.: The coordinated evolution of yeast proteins is constrained by
functional modularity. Trends in Genetics 22(8), 416–419 (2006)

21. Garey, M.R., Johnsons, D.S.: Computers and Interactability: A Guide to the The-
ory of NP-Completeness, p. 196. Freeman, New York (1979)

22. Knudsen, B.: Optimal multiple parsimony alignment with affine gap cost using a
phylogenetic tree. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI),
vol. 2812, pp. 433–446. Springer, Heidelberg (2003)

23. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

24. Man, O., Pilpel, Y.: Differential translation efficiency of orthologous genes is in-
volved in phenotypic divergence of yeast species. Nature Genetics 39, 415–421
(2007)

25. Ohno, S.: Evolution by gene duplication. Springer, Heidelberg (1970)
26. Scannell, D.R., Butler, G., Wolfe, K.H.: Yeast genome evolution-the origin of the

species. Yeast 24(11), 929–942 (2007)
27. Snel, B., Huynen, M.A.: Quantifying modularity in the evolution of biomolecular

systems. Genome Res. 14(3), 391–397 (2004)
28. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the

entire yeast genome. Nature 387(6634), 708–713 (1997)

Ancestral Reconstruction by Asymmetric

Wagner Parsimony over Continuous Characters
and Squared Parsimony over Distributions

Miklós Csűrös

Department of Computer Science and Operations Research
University of Montréal

C.P. 6128, succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
csuros@iro.umontreal.ca

Abstract. Contemporary inferences about evolution occasionally
involve analyzing infinitely large feature spaces, requiring specific al-
gorithmic techniques. We consider parsimony analysis over numerical
characters, where knowing the feature values at terminal taxa allows
one to infer ancestral features, namely, by minimizing the total number
of changes on the edges using continuous-valued distance measures. In
particular, we show that ancestral reconstruction is possible in linear
time for both an asymmetric linear distance measure (Wagner parsi-
mony) over continuous-valued characters, and a quadratic distance mea-
sure over finite distributions. The former can be used to analyze gene
content evolution with asymmetric gain and loss penalties, and the lat-
ter to reconstruct ancestral diversity of regulatory sequence motifs and
multi-allele loci. As an example of employing asymmetric Wagner parsi-
mony, we examine gene content evolution within Archaea.

1 Introduction

Phylogenetic studies commonly operate with molecular sequence data, where
homologous characters take values over a finite space. When working with char-
acters such as numbers of paralogs within homologous gene families, allele fre-
quencies, sequence length polymorphisms, or DNA sequence motif distributions,
the analysis of theoretically infinite feature spaces becomes necessary [1]. In such
situations, one can resort to parsimony criteria to infer ancestral states, or score
candidate phylogenies by minimizing the total change of the feature in question.
Change is quantified by using different types of distance measures which are ap-
propriate for the study. A popular parsimony criterion for features that can be
ordered linearly is the so-called Wagner parsimony [2,3] in which change is penal-
ized simply by the absolute value of the numerical difference on an edge. Another
criterion used sometimes is the minimization of squared distance between the
numerical values [4].

Wagner parsimony has been used to infer the evolution of gene family size.
Change in the family size, however, is not always equally likely in both directions,

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 72–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ancestral Reconstruction by Asymmetric Wagner Parsimony 73

as losses may be more frequent than gains, or vice versa. We propose a mod-
ification of the original Wagner parsimony criterion for such situations, where
increases and decreases are penalized linearly, but with different penalty factors.
We discuss the resulting optimization problem, and show how to compute the
parsimony score, as well as the ancestral states in linear time, regardless of the
actual values at the terminal taxa. We also show that squared parsimony over fi-
nite distributions can be computed efficiently, by performing the minimization in
each coordinate separately, without considering the restriction to the probability
simplex.

We demonstrate the utility of asymmetric Wagner parsimony by an analysis
of gene content evolution in Archaea.

2 Algorithmic Results

2.1 Problem Statement

Consider the following general parsimony framework, introduced by Sankoff and
Rousseau [5]. Let T = (V, E) be a rooted tree that represents a phylogeny, with
node set V and edge set E. The set of tree leaves is denoted by L. It is assumed
that every non-leaf node has at least two children. Each node u ∈ V is associated
with a label ξ[u] ∈ X where X is the space of possible labels. The focus of
this study is the case when X is a numerical infinite space such as X = R

d or
X = {0, 1, 2, . . .}. The label space is equipped with a change weight function
∆ : X2 �→ [0,∞). (Classically, ∆ is a proper distance metric, but we will consider
asymmetric functions, as well.) We are interested in the following problem.

General parsimony labeling problem. Given the tree T , label space (X, ∆),
and fixed assignments ξ[u] at the leaves u ∈ L, find ξ[v] for all inner nodes
v ∈ V \ L that minimize the total change∑

uv∈E

∆(ξ[u] → ξ[v]).

The problem in this form was introduced in [5] as a Steiner tree problem [6]
with a distance metric ∆. Some specific cases of the general problem have been
extensively studied. The case of nonnegative integers X = N and ∆(y → x) =
|y − x|, is known as Wagner parsimony that can be solved in linear time [2,3].
The case X = R and ∆(y → x) = (y−x)2 is known as squared parsimony, which
also has a linear-time solution [4]

The parsimony labeling problem is encountered in phylogenetic studies when
one wants to estimate the ancestral state of some feature that is represented by
the labels [7,8]. An unknown phylogeny can also be inferred by searching for the
topology T over the leaf set L that minimizes the parsimony score [1].

Features in question may be (continuous-valued) allele frequencies, in which
case squared-parsimony is in fact equivalent to likelihood maximization under a
Brownian motion model [4,1]. Wagner parsimony has been used to infer the evolu-
tion of sequence length polymorphisms [9], genome size [10], and gene family size.

74 M. Csűrös

2.2 General Solution by Dynamic Programming

The general parsimony problem has a solution by dynamic programming, as
elucidated in the pioneering paper of Sankoff and Rousseau [5]. The key idea is
to define the subtree weight functions fu(x) : x ∈ X �→ [0,∞] for each node u ∈ V,
which give the minimum weight within the subtree Tu rooted at u when ξ[u] = x.
For leaves, fu(x) = 0 if x = ξ[u]; otherwise, fu(x) = ∞. For an inner node u,
the following recursion holds.

fu(y) =
∑

v∈children(u)

min
x∈X

(
∆(y → x) + fv(x)

)
. (1)

For every edge uv ∈ E, define the stem weight functions

hv(y) = min
x∈X

(
∆(y → x) + fv(x)

)
, (2)

so that
fu(y) =

∑
v∈children(u)

hv(y). (3)

The minimum total weight is then miny froot(y), and the optimal labeling can
be determined by backtracking. For a finite label space, the general solution
takes O(|X|2) time on each edge. For an infinite space, it is not immediately
clear how the minimization can be done in practice. Luckily, it is possible to
compute f and h efficiently in many important cases [2,4,5].

2.3 Asymmetric Wagner Parsimony

Often, the labels represent features that are more easily lost than gained [11,7].
Gene content evolution, in particular, is characterized by frequent gene loss,
which may be properly captured in parsimony methods by penalizing gains more
than losses [12]. We define the asymmetric Wagner parsimony problem as that
of general parsimony labeling when

X ⊆ R and ∆(y → x) =

{
γ(x − y) if y < x;
λ(y − x) if x < y,

where γ, λ > 0 are gain and loss penalty factors, respectively. The pivotal obser-
vation for an algorithmic solution is given by the following lemma; the claim is
illustrated in Figure 1.

Lemma 1. For every non-leaf node u ∈ V \ L, the subtree weight function is a
continuous, convex, piecewise linear function. In other words, there exist k ≥ 1,
α0 < α1 < · · · < αk, x1 < x2 · · · < xk, and φ0, . . . , φk ∈ R that define fu in the
following manner.

Ancestral Reconstruction by Asymmetric Wagner Parsimony 75

a0

a1

a2

a3

a4

a5

x

f(x)

-

h (y)+ h (y)-

x1 x2 x3 x4 x5

y

x3x =x2
+ x =x4

-

Fig. 1. Illustration of Lemma 1. Left: for asymmetric Wagner parsimony, the subtree
weight function f is always piecewise linear with slopes a0, . . . , ak (k = 5 here). Right:
the stem weight function h is determined by the two auxiliary functions h+ and h−,
which are obtained by “shaving off” the steep extremities of f , and replacing them
with slopes of −γ, and λ, respectively.

fu(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ0 + α0x if x ≤ x1;
φ1 + α1(x − x1) if x1 < x ≤ x2;
. . .

φk−1 + αk−1(x − xk−1) if xk−1 < x ≤ xk;
φk + αk(x − xk) if xk < x,

(4)

where φ1 = φ0 +α0x1 and φi+1 = φi +αi(xi+1 −xi) for all 0 < i < k. Moreover,
if u has d children, then a0 = −dγ and ak = dλ.

Proof. The proof proceeds by induction over the tree in a postorder traversal,
following the recursion of (1). By the definition of ∆, if v is a leaf, then

hv(x) =

{
γ(ξ[v] − x) if x ≤ ξ[v];
λ(x − ξ[v]) if ξ[v] < x.

(5)

Base case. If all d children of u are leaves, then (3) and (5) imply that (4) holds
with some k ≤ d, α0 = −dγ and αk = dλ. For a more precise characterization,
let C be the set of children of u, and consider the set of leaf labels S =

{
ξ[v] : v ∈

C
}
. Then k = |S|, and {x1, . . . , xk} = S. Furthermore, for all i = 1, . . . , k,

αi = tiλ− (d− ti)γ with ti =
∑

v∈C{ξ[v] ≤ xi}, where {·} denotes the indicator
for the event within the braces; i.e., ti is the number of children that carry a
label that is not larger than xi. Finally, φ0 = γ

∑
v∈C ξ[v].

Induction step. Assume that u is an inner node at which (4) holds for every
non-leaf descendant. Let v be a non-leaf child of u. By the induction hypothesis,
fv(x) is a piecewise linear function as in (4) with some parameters (αi : i =
0, . . . , k), and (xi : i = 1, . . . , k).

76 M. Csűrös

In order to compute hv(y) = minx∈X

(
∆(y → x) + fv(x)

)
, consider the two

minimization problems over X split into half by y:

h+
v (y) = min

x∈X;x>y

(
γ(x − y) + fv(x)

)
h−

v (y) = min
x∈X;x≤y

(
λ(y − x) + fv(x)

)
.

Clearly, hv(y) = min
{

h+
v (y), h−

v (y)
}
. Figure 1 illustrates the shapes of h+

and h−.
Recall that α0 < α1 < · · · < αk by the induction hypothesis. Since the

constant term (−γy) can be ignored in the minimization for h+, the solution is
determined by the point x+ = xj with j = min{i : αi + γ ≥ 0}. In particular,

h+
v (y) =

{
γ ·

(
x+ − y

)
+ fv

(
x+

)
if y < x+;

fv(y) if y ≥ x+.

In a similar manner, let x− = xj with j = min{i : αi − λ ≥ 0}. Then

h−
v (y) =

{
fv(y) if y < x−;
λ ·

(
y − x−)+ fv

(
x−) if y ≥ x−.

Notice that the induction hypothesis implies that x+ ≤ x−, since α0 +γ < 0 and
αk−λ > 0 hold. By the definition of x+ and x−, it is also true that h+

v (y) ≤ fv(y)
if y < x+, and that h−

v (y) ≤ fv(y) if y ≥ x−. Hence, hv is a piecewise linear
function in the form

hv(y) =

⎧⎪⎨⎪⎩
γ ·

(
x+ − y

)
+ fv

(
x+

)
if y < x+;

fv(y) if x+ ≤ y < x−;
λ ·

(
y − x−)+ fv

(
x−) if y ≥ x−.

(6)

The formula also shows that when ξ[u] = y, the best labeling for v is either
x = x+ for y < x+ (i.e., net gain on edge uv), or x = x− for y ≥ x− (i.e., net
loss), or else x = y (no change).

Equations (5) and (6) show that hv(y) is always a continuous, convex, piece-
wise linear function with slopes (−γ) on the extreme left and λ on the extreme
right. Consequently, fu(y) =

∑
v∈children(u) hv(y) is also a continuous, convex,

piecewise linear function, with slopes (−dγ) on the left and dλ on the right.
Hence, the induction hypothesis holds for u. ��

The proof provides the recipe for implementing the dynamic programming of (1).
The algorithm has to work with piecewise linear functions as in (4), parametrized
by the set of slopes (αi : i = 0, . . . , k), breakpoints (xi : i = 1, . . . , k) and shift φ0.
The parameters are naturally sorted as α0 < α1 < · · · < αk and x1 < x2 < · · · <
xk, and can be thus stored as ordered arrays. The algorithm is sketched as
follows.

Ancestral Reconstruction by Asymmetric Wagner Parsimony 77

W1 Dynamic programming for asymmetric Wagner

W2 initialize hu(·) and fu(·) as null at each node u ∈ V

W3 for all nodes u in postorder traversal
W4 if u is a leaf
W5 then set hu(x) as in (5)
W6 else � hv(x) is computed for all children v already
W7 compute fu(x) =

∑
v∈children(u)

hu(x)

W8 if u is not the root then compute hu(y) by (6)
W9 find the minimum of froot(x)
W10 backtrack for the optimal labeling if necessary

Theorem 1. For a tree T of height h and n = |V| nodes, asymmetric Wagner
parsimony can be solved in O

(
n min{h, D} log dmax

)
time where D is the number

of different leaf labels and dmax is the maximum arity.

Proof. First, notice that the breakpoints at each fu and hu are exactly the
set of different leaf labels in the subtree rooted at u, with at most D elements.
Line W5 takes O(1) time at each leaf. In Line W8, a binary search for x+ and x−

takes O(log k) time if there are k breakpoints. In Line W7, piecewise linear
functions need to be summed, which can be done by straightforward modification
of well-known linear-time merging algorithms for ordered lists [13]. In order
to sum the piecewise linear functions, the breakpoints must be processed in
their combined order, and the intermediate slopes need to be computed. The
procedure takes O(k log d) time, if the node has d children, and there are a total
of k breakpoints at the children’s stem weight functions. Now, k ≤ D, and, thus,
every node can be processed in O(D log dmax) time. The O(nh log dmax) bound
comes from the fact that k is bounded by the number of leaves in the subtree.
The total computing time for nodes that are at the same distance from the
root is then O(n log dmax). By summing across all levels, we get O(nh log dmax)
computing time. ��

Remark. Lemma 1 and its proof show that there is an optimal solution where
every non-leaf node carries a label that appears at one of the leaves. Accordingly,
it is enough to keep track of fu(x) only where x takes one of the leaf label values.
Adapting Sankoff’s general parsimony algorithm over the discrete finite label
space defined by the D label values of interest yields an O(nD2) algorithm.

2.4 Squared Parsimony

In certain applications, node labels are distributions such as allele frequen-
cies [14], or probabilistic sequence motifs [15]. Suppose, for example, that we
identified homologous regulatory sequence motifs in some genomes related by a
known phylogeny. A particular instance of the motif is a DNA oligomer s1s2 · · · s�

with a fixed length �. From the set, we compile sequence motifs describing each
terminal node by the labels ξis[u], which give the relative frequency of each nu-
cleotide s at motif position i = 1, . . . , �. From the node labels, we would like to
infer the compositional distribution of the motif at ancestral nodes. In a recent

78 M. Csűrös

example, Schwartz and coworkers [15] examined the evolution of splicing signals
in eukaryotes. The authors deduced that the 5’ splice site and the branch site
were degenerate in the earliest eukaryotes, in agreement with previous studies
by Irimia and coworkers [16]. These findings are intriguing as they hint at the
prevalence of alternative splicing in the earliest eukaryotes. Schwartz et al. [15]
reconstructed the diversity of ancestral splicing signals by using a squared change
penalty ∆(y → x) =

∑�
i=1

∑
s=A,C,G,T

(
xis − yis

)2. An equivalent sum-of-squares
penalty was suggested by Rogers [14] in a different context, where i = 1, . . . , �
would stand for genetic loci and s would index possible alleles at each locus.
Since the positions can be handled separately, we consider the problem of gen-
eral parsimony at a given position. Specifically, we assume that the labels are
distributions over a finite set A = {1, 2, . . . , r}. The change penalty is defined by

∆(y → x) =
∑
s∈A

(
xs − ys

)2
.

The case of a binary alphabet r = 2 was shown to be solvable in linear time
by Maddison [4]. The algorithm is stated for the general parsimony problem
with X = R and ∆(y → x) = (y − x)2. While Maddison’s algorithm is triv-
ially extended to any dimension with X = R

r and ∆(y → x) =
∑

i(yi − xi)2,
the extension to distributions with r > 2 is not immediately obvious. In [15],
the distributions were discretized to an accuracy of 0.02, and then solved
on the corresponding grid by using Sankoff’s dynamic programming. Notice that
there are 23426 such discretized distributions, and dynamic programming over
a finite alphabet takes quadratic time in the alphabet size. Here we show that
Maddison’s algorithm can be carried out at each coordinate independently, as
the computed solution is automatically a distribution.

Squared Parsimony for a Continuous Character

For a discussion, we restate the result of [4].

Lemma 2. In the general parsimony problem with X = R and ∆(y → x) =
(y−x)2, subtree weight functions are quadratic. In other words, at each non-leaf
node u, there exist α, µ, φ ∈ R such that

fu(x) = α(x − µ)2 + φ. (7)

Proof. We will use the simple arithmetic formula that

d∑
i=1

αi(x − µi)2 = α(x − µ̄)2 + α
(
µ(2) − (µ̄)2

)
(8)

with

α =
d∑

i=1

αi, µ̄ =
∑d

i=1 αiµi∑d
i=1 αi

, µ(2) =
∑d

i=1 αiµ
2
i∑d

i=1 αi

.

The proof proceeds by induction over the tree in a postorder traversal, following
the recursion structure of Eq. (1).

Ancestral Reconstruction by Asymmetric Wagner Parsimony 79

Base case. Let u be an inner node with d children {v1, . . . , vd} that are all
leaves. By (1),

fu(y) =
d∑

i=1

(y − ξ[vi])2.

Hence (8) applies with αi = 1 and µi = ξ[vi]. Specifically, (7) holds with µ =∑d
i=1 ξ[vi]/d.

Induction step. Suppose that u is an inner node with d children {v1, . . . , vd},
which are all either leaves, or inner nodes for which (7) holds. Let v = vi be an
arbitrary child node. If v is a leaf, then hv(y) = (y − ξ[v])2. If v is an inner node
with fv(x) = α(x − µ)2 + φ, then

hv(y) = min
x

(
(y − x)2 + α(x − µ)2 + φ

)
= min

x

{
(α + 1)

(
x − y + αµ

α + 1

)2
}

+
α

α + 1
(y − µ)2 + φ

=
α

α + 1
(y − µ)2 + φ.

Notice that the best labeling at v is achieved with x = y+αµ
α+1 .

Consequently, the stem weight function can be written as hvi(x) = αi(x −
µi)2 + φi for every child vi with some αi, µi, φi ∈ R. By (3),

fu(x) =
d∑

i=1

(
αi(x − µi)2 + φi

)
= α(y − µ̄)2 + φ,

where φ = α
(
µ(2) − (µ̄)2

)
+
∑d

i=1 φi, and α, µ̄, µ(2) are as in (8). Therefore, (7)
holds at u. ��

The proof of Lemma 2 shows how the parameters α and µ need to be computed
in a postorder traversal. Namely, for every node u, the following recursions hold
for the parameters α = αu and µ = µu of (7).

αu =

{
undefined if u is a leaf;∑

v∈children(u) βv otherwise;
(9a)

µu =

⎧⎨⎩
ξ[u] if u is a leaf;∑

v∈children(u)
βvµv∑

v∈children(u)
βv

otherwise;
(9b)

where

βv =

{
1 if v is a leaf;

αv

αv+1 otherwise.
(9c)

80 M. Csűrös

Squared Parsimony for Distributions

Suppose that the nodes are labeled with finite distributions over a set A =
{1, 2, . . . , r}. Accordingly, we write ξi[u] with i = 1, . . . , r for the i-th probability
value at each node u. Node labelings are scored by the square parsimony penalty:
∆(y → x) =

∑r
i=1(yi −xi)2, where y and x are distributions over A, i.e., points

of the (r − 1)-dimensional simplex in R
r defined by 0 ≤ ξi[u] for all i, and∑r

i=1 ξi[u] = 1. Suppose that one carries out the minimization coordinate-wise,
for each i separately, without making particular adjustments to ensure that the
ancestral labels also define a distribution. By Lemma 2, such an independent
ancestral reconstruction finds the subtree weight functions of the form fu,i(x) =
αu

(
x−µu,i

)2 +φu,i in each coordinate i. (Equations (9a) and (9c) show that αu

and βu are determined by the tree topology alone, and are thus the same in each
coordinate.)

Theorem 2. The coordinate-wise independent ancestral reconstruction produces
the optimal solution for distributions.

Proof. Let fu,i(x) denote the subtree weight function for coordinate i at node u.
Clearly,

∑r
i=1 fu,i(xi) is a lower bound on the true subtree weight functionbreak

fu(x1, . . . , xr) for the distributions. Consequently, it is enough to show that the so-
lution by coordinate-wise reconstruction leads to valid distributions. From Equa-
tion (9b), if u is an inner node, then

∑r
i=1 µu,i =

∑
v∈children(u)

βv

αu

∑r
i=1 µv,i. As∑r

i=1 µu,i = 1 holds at every leaf u, the equality holds at all nodes by induction. It
is also clear that µu,i ≥ 0 is always true, since βv is never negative. In particular,
the optimal labelings at the root define a distribution with ξi[root] = µroot,i.

In the proof of Lemma 2, we showed that if the parent of an inner node v
is labeled by y = (y1, . . . , yr), then the optimal labeling at v is ξi[v] = xi =
yi+αvµv,i

αv+1 . Now,
∑r

i=1 xi =
∑

i
yi+αv

∑
i
µv,i

αv+1 = 1 if
∑

i yi = 1 holds. Since the
independent ancestral reconstructions produce a distribution at the root, the
backtracking procedure produces a distribution at every inner node v. ��

3 Gene Content Evolution in Archaea

We applied asymmetric Wagner parsimony to the analysis of gene content evo-
lution in Archaea. We note that parsimony-based analysis has its well-known
shortcomings, such as the underestimation of gene loss, and the imposition of
uniformity across lineages and genes, which may be avoided with sophisticated
probabilistic methods [17,18]. Nevertheless, parsimony may give important in-
sights by providing a conservative estimate of ancestral gene content, and by
underlining some general idiosyncrasies without much procedural difficulty.

Makarova and coauthors [19] delineated homologous gene families across 41
completely sequenced and annotated archaeal genomes. They analyzed some
characteristic features of archaeal genome evolution, and extrapolated the gene

Ancestral Reconstruction by Asymmetric Wagner Parsimony 81

composition of the last archaeal common ancestor, or LACA. The analysis re-
lied on so-called phyletic profiles, which are binary patterns of family presence-
absence, in conjunction with parsimony-based ancestral reconstruction algo-
rithms [20]. In our analysis, we used the available information on the number of
paralogs within different genomes.

3.1 Data and Methods

Data was downloaded from ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG.
The data set defines 7538 families (so-called archaeal clusters of orthologous
genes, or arCOGs) in 41 genomes. Figures 2 and 3 show the organisms and their
phylogenetic relationships. The abbreviations are those used in [19] and the
arCOG database: the Appendix lists the organism names and the abbreviations.
The archaeal phylogeny is based on the one used by Makarova et al. (Figure 7
in [19]) for inferring gene content evolution, using additional considerations to
partially resolve certain polytomies. Namely, we assume the monophyly of the
Pyrococcus genus within Thermococcales [21], and the monophyly of Metha-
nomicrobia excluding Halobacteriales [22], as depicted in Figure 3.

In order to perform the analysis, an adequate gain and loss penalization
needed to be chosen. The ratio between the two penalty factors influences how
much of the reconstructed history is dominated by gene loss [12]. Since the infer-
ence depends only on the ratio of the gain and loss penalties, we set λ = 1, and
performed the reconstruction at different gain penalties γ. We selected a gain
penalty of γ = 1.6, matching the estimate of [19] the closest. The reconstruction
results in a LACA genome of 984 families and 1106 genes, which is similar in
the corresponding statistics to such extant archaea as Methanopyrus kandleri
(Metka; 1121 arCOGs with 1336 genes) and Cenarchaeum symbiosum (Censy;
918 arCOGs with 1296 genes).

3.2 Results

Gene content at LACA. The reconstructed set of ancient families contains 96
families inferred as present, and 107 as absent in contradiction with [19]. The
two reconstructions qualitatively give a very similar picture, pointing to a LACA
genome complexity comparable to the simplest free-living prokaryotes such as
Mycoplasma. Table 1 shows a summary of the functional categorization for the
inferred primordial gene families. Among the gene families present in LACA, 91
(9%) included more than one gene. The majority of these families (77 of 91)
have closer homologs among Bacteria than among Eukaryota, which would be
expected if Archaea emerged from a bacterial lineage. These multi-gene families
are indicative of ancestral adaptations: notable cases include reverse gyrase (2
paralogs), hinting at a hyperthermophilic LACA, and various genes implicated
in pyruvate oxidation that has a pivotal importance in archaeal metabolism [21].

Losses and gains of families. Figures 2 and 3 show further details of the an-
cestral reconstruction. Using asymmetric Wagner parsimony, it was possible to

ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG

82 M. Csűrös

Table 1. Ancestral gene content at LACA. Columns: (a) arCOG functional category
code, (b) functional category description, (c) LACA families with more than one mem-
ber, (d) total number of families at LACA.

Cat(a) Description(b) Multi(c) Fam(d)

Information storage and processing
J Translation 4 153
K Transcription 6 59
L Replication 7 57

Cellular processes and signaling
D Cell cycle control 3 5
V Defense mechanisms 3 19
T Signal transduction mechanisms 2 8
M Cell wall, membrane and envelope biogenesis 7 23
N Cell motility 1 5
U Intracellular trafficking and secretion 1 11
O Posttranslational modification, protein turnover, chaperones 5 41

Metabolism
C Energy production and conversion 10 77
G Carbohydrate transport and metabolism 6 37
E Amino acid transport and metabolism 14 101
F Nucleotide transport and metabolism 3 46
H Coenzyme transport and metabolism 3 70
I Lipid transport and metabolism 2 23
P Inorganic ion transport and metabolism 1 45
Q Secondary metabolites biosynthesis, transport and catabolism 1 23

R,S Poorly characterized or unknown 12 197

Total 91 984

postulate expansions and reductions within gene families, in addition to the fam-
ilies’ appearance and elimination. Numerous losses, just as in the reconstruction
of [19], are associated with symbiotic lifestyles (Censy and Naneq). Our studies
also agree on examples of significant losses coupled with major gains in Thermo-
coccales (node 7) and Thermoplasmales (node 9), hinting at unusually dynamic
genomes. Our reconstructions of lineage-specific changes, however, often differ
numerically, as illustrated in Table 2. Namely, Wagner parsimony tends to pos-
tulate fewer genes at inner nodes, and family gains on deep branches also tend to
be lower. Our reconstruction seems more conservative, and at times even more
plausible. For instance, we posit major gains in Desulfurococcales and Sulfolob-
ales (nodes 4 and 5) lineages, whereas [19] postulates an extremely large genome
for their common ancestor (node 3) instead.

Patterns of diversification. Interestingly, large losses are not always associated
with compact genomes: Methanosarcina species (cf. Fig. 3) are among the ar-
chaea with the largest genomes, but terminal lineages have disposed of many
families to end up with their current gene repertoire. The finding points to
different paths of specialization from a versatile ancestor, accompanied by the
elimination of redundant functions.

Ancestral Reconstruction by Asymmetric Wagner Parsimony 83

Naneq

Censy

Aerpe

Stama
Hypbu

Sulac
Sulto

Sulso

Calma

Thepe

Pyrae
Pyris

Pyrca

Thete

Metka

Arcfu

Pyrab Pyrho Pyrfu

Theko Picto Theac

Thevo

MetstMetth

Metja

MetmC

Metmp

4
5

3

2

1

8

7

9

10

6

11

+22 10
-634 20

+209 37
-85 17

+266 53
-75 12

+741 139
-79 5

+77 10
-86 17

+188 67
-418 43

+185 44
-25 3

+260 73
-333 51

+528 168
-162 26

+465 77
-276 26

+342 39
-402 37

+166 42
-17 3

+164 24
-153 33

+178 66
-75 9

Halobacteriales

Methanomicrobia

LACA

CRENARCHAEOTA EURYARCHAEOTA

NANOARCHAEOTA

gain expansion
loss reduction

Legend for changes on branches:

+224 29
-14 3

Fig. 2. Changes of gene repertoire in main lineages. On each branch, we computed
the number of arCOG families gained and lost, as well as those that were retained
but underwent changes in the number of paralogs (i.e., expansions or reductions). The
numbers are shown in the small tables, in which darkened cells highlight major losses.
Correspondence between numbered nodes and taxonomic groups is given in Table 2.
The subtree below node 11 is shown in Figure 3.

Halma Natph

Halsp
Halwa

Metcu

Methu

Metla

Metbu

Metsa

Uncme

Metac

MetmaMetba

11

+686 110
-239 17

+186 125
-261 82

+505 396
-63 12

+267 190
-175 55

+282 194
-246 60

+219 50
-74 13

+261 86
-136 26

+231 129
-139 41

+90 63
-383 95

+127 51
-78 32

1117 289
-47 10

+77 186
-226 117

+144 310
-165 63

+81 137
-315 151

+385 102
-217 65

+170 60
-400 82

+409 219
-247 37

+289 214
-124 35

METHANOSARCIN A
METHANOMICROBIALES

HALOBACTERIALES

gain expansion
loss reduction

Fig. 3. Gene content evolution within Halobacteriales and Methanomicrobia. Stars
highlight substantial expansions (at least half as many as family gains).

84 M. Csűrös

On branches leading to major lineages, newly appearing families typically
outnumber expanding families by a factor of two to eight. It is not surpris-
ing that gains on those branches would be so frequent: the substantial dif-
ferences in lifestyles are presumably possible only by acquiring genes with
adequate new functionalities through lateral transfer or other means of evo-
lutionary innovations. At the same time, terminal branches often display abun-
dant family expansions: in 29 of the 41 terminal lineages, there are less than
twice as many newly acquired genes than expanding families. This point is il-
lustrated in Figure 3, showing a detailed reconstruction within a subtree. The
most dramatic expansions are seen in Sulfolobales (below node 5 in Fig. 2),
Methanosarcina and Halobacteriales (cf. Fig. 3). The branches leading to the
progenitors of the same groups are precisely those with the most gains inferred
in this study. The abundance of expansions is not a simple consequence of rel-
atively large genome sizes, since expansions are frequent even in relative terms.
Within Halobacteriales, 7.5–18% of families expanded on terminal branches; on
the terminal branches of M. hungatei (Methu) and M. acetivorans (Metac), more
than 12% of families did, in contrast with an overall average of 5.7% on terminal
branches.

The observed patterns exemplify adaptations to new environments. Such an
adaptation may be prompted by the acquisition of new functions, with ensuing
series of gene duplications that lead to sub-functionalization, and, thus, special-
ization. A further scrutiny of such scenarios, is unfortunately difficult, because
a substantial number of lineage-specific expansions are within poorly character-
ized families. In the most extreme case of H. marismortui (Halma), for example,
126 (31%) of 396 expanding families are poorly characterized. The top arCOG
functional categories represented by the remaining expansions are C (energy: 35
families), E (amino acid metabolism: 33), K (transcription: 26), and T (signal
transduction: 25). The functional variety of lineage-specific expansions illustrates
the wide-ranging consequences of adapting to extreme environments.

Table 2. Inferred gene content history in major linages. “Presence” columns give the
number of arCOG families inferred at the listed taxonomic groups. “Gain” columns
list the number of families that appear on the branch leading to the listed nodes.

This study Makarova et al. (Fig. 7)
Node number Group Presence Gain Presence Gain

1 Crenarchaeota 1148 185 1245 291
2 Thermoproteales 1339 266 1404 237
3 Thermoprotei 1139 77 2128 928
4 Desulfurococcales 1263 209 not shown
5 Sulfulobales 1801 741 not shown
6 Euryarchaeota 1194 224 1335 349
7 Thermococcales 1413 465 1715 720
8 Pyrococcus 1562 166 not shown
9 Thermoplasmales 1134 342 1474 643
10 “Class I” methanogens 1205 164 1563 415

Ancestral Reconstruction by Asymmetric Wagner Parsimony 85

4 Conclusion

When small data sets need to be analyzed, or reasonable assumptions for proba-
bilistic analysis are not available, parsimony is a well-justified method of choice.
Even in phylogenetic reconstructions, parsimony may enjoy an advantage over
sophisticated likelihood methods, as it enables the faster exploration of the search
space by quick scoring of candidate phylogenies [1]. The present work augments
the set of parsimony tools available for the analysis of numerical evolutionary
characters in a range of applications, including the analysis of gene content,
regulatory motifs, and allele frequencies.

References

1. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)
2. Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19, 83–92 (1970)
3. Swofford, D.L., Maddison, W.P.: Reconstructing ancestral states using Wagner

parsimony. Math. Biosci. 87, 199–229 (1987)
4. Maddison, W.P.: Squared-change parsimony reconstructions of ancestral states for

continuous-valued characters on a phylogenetic tree. Syst. Zool. 40, 304–314 (1991)
5. Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in arbitrary metric

space. Math. Program. 9, 240–246 (1975)
6. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22, 55–89 (1992)
7. Cunningham, C.W., Omland, K.E., Oakley, T.H.: Reconstructing ancestral char-

acter states: a critical reappraisal. Trends Ecol. Evol. 13, 361–366 (1998)
8. Pagel, M.: Inferring the historical patterns of biological evolution. Nature 401,

877–884 (1999)
9. Witmer, P.D., Doheny, K.F., Adams, M.K., Boehm, C.D., Dizon, J.S., Goldstein,

J.L., Templeton, T.M., Wheaton, A.M., Dong, P.N., Pugh, E.W., Nussbaum, R.L.,
Hunter, K., Kelmenson, J.A., Rowe, L.B., Brownstein, M.J.: The development of
a highly informative mouse simple sequence length polymorphism (SSLP) marker
set and construction of a mouse family tree using parsimony analysis. Genome
Res. 13, 485–491 (2003)

10. Caetano-Anollés, G.: Evolution of genome size in the grasses. Crop. Sci. 45, 1809–
1816 (2005)

11. Omland, K.E.: Examining two standard assumptions of ancestral reconstructions:
repeated loss of dichromatism in dabbling ducks (Anatini). Evolution 51, 1636–
1646 (1997)

12. Koonin, E.V.: Comparative genomics, minimal gene sets and the last universal
common ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

14. Rogers, J.S.: Deriving phylogenetic trees from allele frequencies. Syst. Zool., 52–63
(1984)

15. Schwartz, S., Silva, J., Burstein, D., Pupko, T., Eyras, E., Ast, G.: Large-scale
comparative analysis of splicing signals and their corresponding splicing factors in
eukaryotes. Genome Res. 18, 88–103 (2008)

16. Irimia, M., Penny, D., Roy, S.W.: Coevolution of genomic intron number and splice
sites. Trends Genet. 23, 321–325 (2007)

86 M. Csűrös

17. Csűrös, M., Miklós, I.: A probabilistic model for gene content evolution with du-
plication, loss, and horizontal transfer. In: Apostolico, A., Guerra, C., Istrail, S.,
Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp.
206–220. Springer, Heidelberg (2006)

18. Iwasaki, W., Takagi, T.: Reconstruction of highly heterogeneous gene-content evo-
lution across the three domains of life. Bioinformatics 23, i230–i239 (2007)

19. Makarova, K.S., Sorokin, A.V., Novichkov, P.S., Wolf, Y.I., Koonin, E.V.: Clusters
of orthologous genes for 41 archaeal genomes and implications for evolutionary
genomics of archaea. Biology Direct 2, 33 (2007)

20. Mirkin, B.G., Fenner, T.I., Galperin, M.Y., Koonin, E.V.: Algorithms for comput-
ing evolutionary scenarios for genome evolution, the last universal common an-
cestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
BMC Evol. Biol. 3, 2 (2003)

21. Fukui, T., Atomi, H., Kanai, T., Matsumi, R., Fujiwara, S., Imanaka, T.: Complete
genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis
KOD1 and comparison with Pyrococcus genomes. Genome Res. 15, 352–363 (2005)

22. Brochier, C., Forterre, P., Gribaldo, S.: An emerging phylogenetic core of Archaea:
phylogenies of transcription and translation machineries converge following addi-
tion of new genome sequences. BMC Evol. Biol. 5, 36 (2005)

A Species Names and Abbreviations

The following organisms are included in the study.

Aerpe Aeropyrum pernix, Arcfu Archaeoglobus fulgidus, Calma Caldivirga maquilin-

gensis IC-167, Censy Cenarchaeum symbiosum, Halma Haloarcula marismortui

ATCC 43049, Halsp Halobacterium species strain NRC-1, Halwa Haloquadratum

walsbyi, Hypbu Hyperthermus butylicus, Metac Methanosarcina acetivorans, Metba

Methanosarcina barkeri fusaro, Metbu Methanococcoides burtonii DSM 6242, Metcu

Methanoculleus marisnigri JR1, Methu Methanospirillum hungatei JF-1, Metja

Methanocaldococcus jannaschii, Metka Methanopyrus kandleri, Metla Methanocor-

pusculum labreanum Z, Metma Methanosarcina mazei, MetmC Methanococcus

maripaludis C5, Metmp Methanococcus maripaludis S2, Metsa Methanosaeta ther-

mophila PT, Metst Methanosphaera stadtmanae, Metth Methanothermobacter ther-

moautotrophicus, Naneq Nanoarchaeum equitans, Natph Natronomonas pharaonis,

Picto Picrophilus torridus DSM 9790, Pyrab Pyrococcus abyssi, Pyrae Pyrobacu-

lum aerophilum, Pyrca Pyrobaculum calidifontis JCM 11548, Pyrfu Pyrococcus furio-

sus, Pyrho Pyrococcus horikoshii, Pyris Pyrobaculum islandicum DSM 4184, Stama

Staphylothermus marinus F1, Sulac Sulfolobus acidocaldarius DSM 639, Sulso Sul-

folobus solfataricus, Sulto Sulfolobus tokodaii, Theac Thermoplasma acidophilum,

Theko Thermococcus kodakaraensis KOD1, Thepe Thermofilum pendens Hrk 5,

Thete Thermoproteus tenax, Thevo Thermoplasma volcanium, Uncme Uncultured

methanogenic archaeon.

An Alignment-Free Distance Measure for Closely
Related Genomes

Bernhard Haubold1, Mirjana Domazet-Los̆o1,2, and Thomas Wiehe3

1 Max-Planck-Institute for Evolutionary Biology, Department of Evolutionary Genetics, Plön,
Germany

2 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
3 Institute of Genetics, Universität zu Köln, Cologne, Germany

Abstract. Phylogeny reconstruction on a genome scale remains computationally
challenging even for closely related organisms. Here we propose an alignment-
free pairwise distance measure, Kr, for genomes separated by less than approxi-
mately 0.5 mismatches/nucleotide. We have implemented the computation of Kr

based on enhanced suffix arrays in the program kr, which is freely available from
guanine.evolbio.mpg.de/kr/. The software is applied to genomes ob-
tained from three sets of taxa: 27 primate mitochondria, eight Staphylococcus
agalactiae strains, and 12 Drosophila species. Subsequent clustering of the Kr

values always recovers phylogenies that are similar or identical to the accepted
branching order.

1 Introduction

Gene phylogenies do not necessarily coincide with organism phylogenies. This well
known observation leads to the idea of reconstructing phylogenies from all available
genetic information, that is, from complete genomes. In fact, the study of whole genome
phylogenies started as soon as suitable data became available [8]. In spite of much
progress since then, the computational obstacles to such analyses are still considerable
and a good part of bioinformatics is concerned with solving them [6].

To the uninitiated the reconstruction of genome phylogenies might appear to sim-
ply involve the scaling up of available techniques for reconstructing gene phylogenies:
compute a multiple sequence alignment and estimate the genealogy from that. However,
in the wake of the first genome projects it proved difficult if not impossible to scale ex-
isting gene-centered alignment software from input of a few kilo bases to several mega
bases. This left two avenues to explore: development of more efficient alignment algo-
rithms and development of alignment-free methods of distance computation.

In the years following publication of the first genomes of free-living organisms,
phylogenomics—as the field concerned with reconstructing phylogenies from genomes
became known—made great strides on both counts [14]. Alignment algorithms and
alignment tools have received most attention as they are useful in many sequence
comparison tasks [6]. In contrast, alignment-free sequence comparison has a more
narrow applicability, the classical case being phylogeny reconstruction from pairwise
distances [3]. The great advantage of this approach is that it obviates the computation-
ally intensive alignment step. In fact, alignment-free distance measures may even be

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 87–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

used in the computation of multiple sequence alignments. For example, pairwise dis-
tances based on exact word (k-tuple) matches [27] underlie the fast mode of guide tree
construction in the popular multiple sequence alignment program clustalw [18].

Two classes of methods for alignment-free sequence comparison can be distin-
guished: (i) methods based on word frequencies, the utility of which may depend on the
word length chosen, and (ii) resolution-free methods, where no such parameter choice
is necessary [26]. These methods have been applied to, for example, phylogeny recon-
struction from γ-protobacterial genomes [5] and the analysis of regulatory sequences
in metazoan genomes [17]. One disadvantage of alignment-free methods is that there
is generally no model to map their results to evolutionary distances. Models describing
the mutation probabilities of homologous nucleotides have been continuously refined
since the pioneering work on this topic by Jukes and Cantor in the late 1960’s [16,29].
However, a recent study indicates that k-tuple distances may be highly accurate when
compared to conventional model-based distances [28].

We have developed a new alignment-free distance measure, which we call Kr. The
central idea of our approach is that closely related sequences share longer exact matches
than distantly related sequences. In the following we derive Kr, describe its implemen-
tation, and demonstrate its utility through simulation. We then apply it to three data sets
of increasing size: 27 primate mitochondrial genomes, eight complete genomes of the
bacterial pathogen Streptococcus agalactiae, which is a leading cause of bacterial sep-
sis in neonates [24], and the complete genomes of twelve species of Drosophila [25].
In each case cluster analysis of Kr values recovers a topology that is close or identical
to the accepted phylogeny.

2 Approach and Data

2.1 Definition of Kr

Consider two sequences, Q = TATAC and S = CTCTGG, which we call query and
subject, respectively. For every suffix of Q, Q[i..|Q|], we look up the shortest prefix,
Q[i..j], that is absent from S. This special prefix is called a Shortest Absent Prefix
(SAP) and denoted by qi. We start by examining the first suffix of our example query,
which covers the entire sequence: Q[1..|Q|] = TATAC. Its shortest prefix, Q[1..1] = T,
does occur in S and hence we extend it by one position to get Q[1..2] = TA, which is
absent from S yielding our first SAP, q1 = TA. Next we determine the shortest prefix
of Q[2..|Q|] = ATAC that is absent from S and find q2 = A, and so on. Notice that
there is no prefix of Q[5..|Q|] = C that is absent from S. In this case we define qi =
Q[i..|Q| + 1]; in other words, we pretend that Q (and S) are terminated by a unique
sentinel character ($) to guarantee that qi exists for all i. Finally we have the SAPs
q1 = TA, q2 = A, q3 = TA, q4 = A, and q5 = C$.

Our algorithm is based on the lengths of the SAPs, |qi|. The key insight leading
from these lengths to a distance measure is that if Q and S are closely related, they are
characterized by many long exact repeats between Q and S. As a consequence, SAP
lengths will tend to be greater than if Q and S are only distantly related.

An Alignment-Free Distance Measure for Closely Related Genomes 89

To make this notion rigorous, we define the observed aggregate SAP length

Ao =
|Q|∑
i=1

|qi|

and its expectation, Ae, which can be computed either analytically [12] or through
shuffling of S. Next, we take the logarithm of Ao/Ae and normalize this quantity by
the maximum value it can take to define the index of repetitiveness, Ir

Ir(Q, S) =
ln(Ao/Ae)

ln(max(Ao)/Ae)
, (1)

where

max(Ao) =
{(|Q|+2

2

)
− 1 if |Q| ≤ |S|

(|Q| − |S| + 1)(|S| + 1) +
(|S|+1

2

)
− 1 otherwise.

(2)

We therefore have
∼ 0 ≤ Ir ≤ 1.

The ceiling of the Ir domain is exact—any pair of identical query and subject sequences
are maximally repetitive and have Ir = 1. In contrast, the floor is an expectation for
reasonably long shuffled sequences of any GC content. The definition of Ir presented
here extends an earlier version [13] by adding the query/subject distinction and the
normalization.

We used simulations to explore the relationship between Ir and the number of pair-
wise mismatches per nucleotide, d. One thousand pairs of 10 kb long sequences with a
fixed d were generated and Figure 1 displays d as a function of simulated ln(Ir) values.
The shape of the bottom right hand part of the curve tells us that in pairs of similar se-
quences few mutations have a large effect on Ir. We found that the relationship between
divergence and Ir could conveniently be modeled with the statistical software R [22]
using two logistic functions, one covering ln(Ir) > −2.78 and the other covering the
rest. Given these two functions, we define the number of pairwise differences based on
the Ir, dr:

dr =
{ 0.1380

1+e(−2.2016−ln(Ir))/−0.5307 if ln(Ir) > −2.78
0.6381

1+e(−5.5453−ln(Ir))/−1.7113 otherwise.
(3)

The dashed line in Figure 1 indicates that this model gives a useful approximation of
the simulated values shown as dots.

Finally, the number of pairwise mismatches, dr, was converted into our distance
measure, Kr, using the formula by Jukes and Cantor [16]:

Kr = −3
4

ln
(

1 − 4
3
dr

)
. (4)

2.2 Asymmetric Values of Kr

In general and depending on which sequence is designated query, the two resulting Ir

values differ, that is, Ir(S1, S2) �= Ir(S2, S1). Direct application of equations (3) and (4)

90 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−14 −12 −10 −8 −6 −4 −2 0

d

ln(Ir)

Fig. 1. Simulated (dots) and modeled (dashed) relationship between the number of pairwise dif-
ferences per site, d, and the index of repetitiveness, Ir. Each dot represents an average of 1000 Ir

values calculated from 1000 pairs of sequences characterized by a given value of d. The model
relationship is stated in Equation (3).

would translate this inequality into asymmetric matrices of Kr values, which is unac-
ceptable for a metric. In the case of two “ideal” sequences devoid of insertions/deletions
and repetitive elements, the difference is due to stochastic placement of mutations along
a DNA sequence. However, indels and shared repetitive elements may cause systematic
differences between the two possible query/subject configurations.

Figure 2A shows an example in which S1 has undergone large deletions and as a
result is much shorter than S2, i.e. S2 is only locally homologous to S1. In this case
Ir(S1, S2) < Ir(S2, S1). However, regions in S2 that have no homologue in S1 are
characterized by SAPs that are only as long as expected by chance. We have therefore
implemented a global and a local mode for Kr computation. In the global mode all
SAPs are included in the analysis. In the local mode the user can set the fraction,

An Alignment-Free Distance Measure for Closely Related Genomes 91

A B

S2

S1

S2

S1

Fig. 2. Sources of asymmetric Ir values. A: S2 is only locally homologous to S1, in which case
Ir(S1, S2) < Ir(S2, S1); B: S1 contains a lower copy number of a genetic element than S2, in
which case again Ir(S1, S2) < Ir(S2, S1).

say 0.5, of SAP lengths compatible with randomness that are excluded from the analy-
sis. All applications to real data presented in this paper were computed using the local
mode.

Figure 2B illustrates variation in the copy number of a shared element: S1 contains
one copy of the element and S2 three, which again leads to Ir(S1, S2) < Ir(S2, S1).
Since many mutations are necessary to reverse the effect of a single gene duplication
on Ir, we always chose the lower of the two values for the computation of Kr.

2.3 Implementation

Conceptually, SAP lengths are determined in a single bottom-up traversal of a general-
ized sufix tree [11] containing the forward and reverse strands of the query and subject
data sets. Each internal node in this tree, n, is classified as isQuery if the subtree rooted
on it has leaves referring to positions in the query sequences, and as isSbjct, if the sub-
tree rooted on it has leaves referring to positions in the subject sequences. Both prop-
erties propagate up the tree. If n isQuery and isSbjct, its child nodes, ci, are searched
for two relevant cases: First, ci may be a leaf referring to a query position x. In that
case the desired SAP length, |qx|, is the string depth of ci plus 1. Second, ci may be an
internal node with the property isQuery but not isSbjct. Then the leaves of the subtree
rooted on ci are looked up and the string depth of ci plus 1 is the desired length of the
SAPs referred to by these leaves.

We based the implementation of the suffix tree traversal on its more space-efficient
sister data structure, the enhanced suffix array [2]. For this purpose we used the suffix
array library by Manzini and Ferragina [19], as it is fast and space-efficient [21]. In its
original form, the library was limited to the analysis of 231 ≈ 2×109 characters, which
we have re-engineered to a limit of 263 ≈ 9 × 1018 characters.

Our program for calculating the Kr is called kr. It takes as input a set of FASTA-
formatted sequences and returns a distance matrix in PHYLIP [10] format. The program
can be accessed via a simple web interface at

http : //guanine.evolbio.mpg.de/kr/

The C source code of kr is also available from this web site under the GNU General
Public License.

92 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

2.4 Phylogenetic Analysis

Phylogenies based on sequence alignments were computed using the neighbor joining
algorithm [23] implemented in clustalw [18]. Phylogenies based on Kr values were
computed using the neighbor joining algorithm implemented in the software package
PHYLIP [10]. Phylogenetic trees were also drawn using PHYLIP.

It is highly desirable to attach confidence measures to individual nodes in a phylogeny.
A popular method for achieving this is bootstrap analysis [7]. The central question in any
bootstrap analysis is, what is the unit to be sampled with replacement (bootstrapped)?
In traditional bootstrap analysis of phylogenies, columns of homologous nucleotides
are sampled with replacement from the underlying multiple sequence alignment [9].
This cannot be applied in the context of an alignment-free distance measure such as Kr.
Instead, we propose to sample random fragments of 500 bp length with replacement
from the original sequences.

Table 1. Primate mitochondrial genomes analyzed in this study

Name Genbank Common Name Accession

1 Cebus albifrons white-fronted capuchin NC 002763.1
2 Chlorocebus aethiops African green monkey NC 007009.1
3 Chlorocebus pygerythrus green monkey NC 009747.1
4 Chlorocebus sabaeus green monkey NC 008066.1
5 Chlorocebus tantalus green monkey NC 009748.1
6 Colobus guereza guereza NC 006901.1
7 Cynocephalus variegatus Sunda flying lemur NC 004031.1
8 Gorilla gorilla western Gorilla NC 001645.1
9 Homo sapiens human NC 001807.4
10 Hylobates lar common gibbon NC 002082.1
11 Lemur catta ring-tailed lemur NC 004025.1
12 Macaca mulatta rhesus monkey NC 005943.1
13 Macaca sylvanus Barbary ape NC 002764.1
14 Nasalis larvatus proboscis monkey NC 008216.1
15 Nycticebus coucang slow loris NC 002765.1
16 Pan paniscus pygmy chimpanzee NC 001644.1
17 Pan troglodytes chimpanzee NC 001643.1
18 Papio hamadryas hamadryas baboon NC 001992.1
19 Pongo pygmaeus Bornean orangutan NC 001646.1
20 Pongo pygmaeus abelii Sumatran orangutan NC 002083.1
21 Presbytis melalophos mitred leaf monkey NC 008217.1
22 Procolobus badius western red colobus NC 008219.1
23 Pygathrix nemaeus Douc langur NC 008220.1
24 Pygathrix roxellana golden snub-nosed monkey NC 008218.1
25 Semnopithecus entellus Hanuman langur NC 008215.1
26 Tarsius bancanus Horsfield’s tarsier NC 002811.1
27 Trachypithecus obscurus dusky leaf monkey NC 006900.1

An Alignment-Free Distance Measure for Closely Related Genomes 93

Table 2. Streptococcus agalactiae genomes and the corresponding multilocus sequence types
analyzed in this study

Strain Accession Sequence Type

1 18RS21 AAJO01000000 ST19
2 2603V/R AAJP01000000 ST110
3 515 AAJQ01000000 ST23
4 NEM316 AAJR01000000 ST23
5 A909 AAJS01000000 ST7
6 CJB111 CP000114 ST1
7 COH1 AE009948 ST17
8 H36B AL732656 ST6

2.5 Data Sets

Three sets of genomes were analyzed: 27 primate mitochondrial genomes (total of
446.23 kb), genomes of eight S. agalactiae strains (17.39 Mb), and the genomes of
twelve Drosophila species (2.03 Gb).

The 27 primate mitochondrial genomes available from Genbank were downloaded
and compared without any further editing (Table 1).

The eight S. agalactiae genomes previously analyzed by [24] were downloaded from
Genbank and subjected to Kr computation without further editing (Table 2). Complete
multilocus sequence data for the sequence types corresponding to the these genomes
was obtained from mlst.net [1].

The 12 Drosophila genomes consisting of up to 14,547 contigs each were down-
loaded from

http : //rana.lbl.gov/drosophila/caf1/all caf1.tar.gz

Unsequenced regions in these genomes marked by N were removed before Kr analysis,
as these generate suffixes with long matching prefixes that distort the Kr.

3 Results

3.1 Clustering of Simulated DNA Sequences

Figure 1 demonstrates that the model underlying the computation of Kr is reason-
ably exact for divergence d ≤ 0.5, which roughly corresponds to ln(Ir) ≥ −8, or
Ir ≥ 0.0003. In order to explore the utility of Kr for sequence clustering, we simulated
a set of 12 DNA sequences of 10 kb with a maximal d of 0.5, that is, by distributing
5000 segregating sites on a random topology generated using the coalescent simula-
tion program ms [15]. The true phylogeny of these sequences is shown in Figure 3A.
Neighbor joining analysis of the 66 Jukes-Cantor distances between the dozen sim-
ulated sequences yielded the phenogram shown in Figure 3B, which is topologically
identical to the true phylogeny. The branch lengths of Figure 3A and B also look almost
indistinguishable. However, they differ in numerical detail as illustrated for the edges

94 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

A B C

1

2

3

4

5

6

8

9

10

11

12

70.892
0.036

1

2

3

4

5

6

8

9

10

11

12

70.162
0.005

1

4

10

11

9

2

3

12

5

6

8

7

Fig. 3. Reconstructing the phylogeny of 12 simulated sequences. A: True phylogeny; B: phy-
logeny based on multiple sequence alignment by clustalw [18]; C: phylogeny based on Kr.
The small numbers on the edges leading from taxon 7 to the root illustrate branch length differ-
ences between phylogenies A and B.

connecting taxa 7 and 8 to the root. Phylogeny reconstruction based on Kr returned
the tree shown in Figure 3C. It is topologically identical to the cluster diagram based
on standard pairwise distances (Figure 3B). Again, the branch lengths also look very
similar but the diagram reveals small differences such as the distance between taxa 5
and 12, which is larger in the Kr phylogeny than in the other two. We shall see that the
Kr measure has a tendency to overestimate terminal branch lengths.

Next we investigate the performance of Kr when applied to real sequences.

3.2 Clustering Primate Mitochondrial Genomes

Figure 4 displays two phylogenies of primate mitochondrial genomes, one based on Kr

(A), the other on a multiple sequence alignment by clustalw (B). The two trees share
important clades, particularly groups of closely related taxa. For example, the well-
known great ape clade (asterisk in Figure 4) is resolved correctly using Kr. In contrast,
within the Cercopithecinae (bullet in Figure 4) Pio hamadryas ought to cluster with the
macaques (Figure 4B) rather than with the green monkeys (Chlorocebus, Figure 4A).

3.3 Clustering Streptococcus agalactiae Genomes

Tettelin and colleagues analyzed the complete genomes of eight S. agalactiae strains
and reconstructed their phylogeny by comparing gene content [24]. Surprisingly, they
obtained a phylogeny that did not cluster strains 515 and NEM316, even though these
belong to the same multilocus sequence type (ST23; Table 2). In our Kr phylogeny of
complete genomes these strains again appear as closest neighbors with 100% boot-
strap support (Figure 5A). Overall the topology of this phylogeny is similar to a
clustalw tree based on multilocus sequence data (Figure 5B). In contrast to the
topology, the branch lengths derived from the two methods differ markedly, with the

An Alignment-Free Distance Measure for Closely Related Genomes 95

A B

Cebus albifrons

Chlorocebus aethiops

Chlorocebus pygerythrus
Chlorocebus sabaeus

Chlorocebus tantalus

Colobus guereza

Cynocephalus variegatus
Gorilla gorilla (gorilla)
Homo sapiens (human)

Lemur catta

Macaca mulatta
Macaca sylvanus

Nasalis larvatus

Nycticebus coucang

Pan paniscus
Pan troglodytes (chimpanzee)

Papio hamadryas

Pongo pygmaeus (orangutan)
Pongo pygmaeus abelii

Presbytis melalophos

Procolobus badius

Pygathrix nemaeus
Pygathrix roxellana

Semnopithecus entellus

Tarsius bancanus

Trachypithecus obscurus

Hylobates lar (gibbon)

∗

•

100
100

78 100

86

86

81

96

92
100
89

100

93

Cebus albifrons

Chlorocebus aethiops

Chlorocebus pygerythrus
Chlorocebus sabaeus

Chlorocebus tantalus

Colobus guereza

Cynocephalus variegatus

Gorilla gorilla (gorilla)
Homo sapiens (human)

Lemur catta

Macaca mulatta
Macaca sylvanus

Nasalis larvatus

Nycticebus coucang

Pan paniscus
Pan troglodytes (chimpanzee)

Papio hamadryas

Pongo pygmaeus (orangutan)
Pongo pygmaeus abelii

Presbytis melalophos

Procolobus badius

Pygathrix nemaeus
Pygathrix roxellana

Semnopithecus entellus

Tarsius bancanus

Trachypithecus obscurus

Hylobates lar (gibbon)

∗

•

Fig. 4. Phylogeny of 27 primate mitochondrial genomes. The asterisk (∗) marks the ape clade
(Hominoidea), the bullet (•) the Cercopithecinae among the old world monkeys (Cercopitheci-
dae). A: Distance estimates based on Kr, bootstrap (100 replicates) greater than 75% are shown;
B: distances based on multiple sequence alignment, all bootstrap values were greater than 95%.

external branches being much longer in the Kr tree. This is not simply a consequence
of the Kr tree being computed from whole genomes and the clustalw tree from
multilocus sequence data. When we subjected the same multilocus sequence data to Kr

A B C

515

NEM316

COH1

2603V/R
A909

H36B

CJB111

18RS21

H36B
A909

COH1

515
NEM316

18RS21

2603V/R

CJB111

515
NEM316

CJB111

H36B
A909

18RS21

263V/R

COH1

Fig. 5. Phylogenies of eight Streptococcus agalactiae strains. A: Based on Kr and whole
genomes, all bootstrap values (100 replicates) were 100%; B: same set of organisms as A, but
tree based on an alignment of multilocus sequence data using clustalw; C: same organisms
and data as in B, but clustering based on Kr.

96 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

D. melanogaster

D. ananassae

D. simulans

D. sechellia

D. yakuba

D. erecta

D. pseudoobscura

D. persimilis

D. willstoni

D. virilis

D. mojavensis

D. grimshawi

Fig. 6. Midpoint-rooted neighbor-joining tree of 12 Drosophila species based on Kr and complete
genome sequences

analysis, we obtained the tree shown in Figure 5C. This is topologically similar to the
alignment-based tree but has longer terminal branches.

3.4 Clustering Drosophila Genomes

Calculating the Kr values for the 12 Drosophila species investigated took four days
and 18 hours of CPU time on a computer with 64 GB RAM. The resulting phylogeny
in Figure 6 has the same topology as the tree computed as part of the Drosophila dozen
project [25].

4 Discussion

In this study we calculate the phylogeny of 12 Drosophila species from their raw
genome sequences using a new measure of sequence similarity, Kr. This is defined
with ease of implementation and scalability in mind. For this reason the underlying
idea is simple: if we compare a query to a closely related subject, for every suffix taken
from the query one finds on average a suffix in the subject with a long common prefix.
Specifically, we concentrated on the shortest prefixes of query suffixes that are absent
from the subject. The entire computation of Kr is based on the lengths of these shortest
absent prefixes, SAPs. There are three reasons for this: (i) SAPs are on average longer
for closely related pairs of sequences than for divergent pairs; (ii) we have previously
derived the distribution of SAP lengths expected by chance alone [12], which allows
us to normalize the observed lengths by their expectation; and (iii) the exact matching
strategy for distance computation we propose is very quick as it is based on enhanced
suffix array traversal [2].

Technicalities aside, our approach is to transform exact match lengths to distances
using the Jukes Cantor model [16]. This is the oldest and simplest model of nucleotide

An Alignment-Free Distance Measure for Closely Related Genomes 97

evolution. It is clear that its application across species with strong intra-genomic vari-
ation in mutation rates as observed in Drosophila [20] violates the model assumption
of rate uniformity across residues and positions. However, the very large amount of se-
quence information contained in the Drosophila genomes leads to the recovery of the
correct clades from Kr in spite of the simplifications of the model.

The trade-off between speed and precision is well known in the field of sequence
alignment. For example, clustalw has a slow, accurate and a fast, approximate mode
(“quicktree”) for guide tree computation. Like our Kr calculation, the fast mode of
guide tree reconstruction is based on alignment-free pairwise sequence comparison.
However, kr is both faster and more sensitive than the quicktree mode. For example,
kr takes half as long as clustalw in quicktree mode to compute the guide tree for
the 27 primate mitochondrial genomes. The difference in run time grows to 12-fold for
a simulated sample of 27 sequences that are 100 kb long, that is 6 times longer than
the primate mitochondrial genomes. In addition, Kr tends to resolve closely related
sequences better than the quicktree mode (not shown).

The reason for this sensitivity to small differences in sequence similarity was appar-
ent in the long terminal branches of the phylogeny based on multilocus sequence data
(Figure 5C) compared to the alignment-based phylogeny (Figure 5B). This emphasis on
recent mutations is already apparent in the simulated relationship between divergence,
d, and Ir (Figure 1). The lower right corner of this graph indicates that the addition of
few mutations to a pair of identical sequences has a strong effect on the Ir and hence
on Kr. This suggests great sensitivity to differences among closely related sequences,
leading to the long terminal branches observed in S. agalactiae (Figures 5A and C) and
Drosophila (Figure 6). Sensitivity and speed of execution make kr a promising tool for
the computation of guide trees that can be used as input to multiple sequence alignment
programs such as clustalw or the more powerful MAVID [4].

The sensitivity of Kr restricts its application to closely related DNA sequences,
which is an important limitation of our method. Figure 1 allows us to quantify the range
of diversity values for which Kr computations might be attempted: For divergence val-
ues greater than 0.5 the relationship between d and Ir becomes increasingly noisy. Un-
der the Jukes-Cantor model of sequence evolution [16] a d-value of 0.5 corresponds to
0.82 substitutions/site. Substitution rates in Drosophila genes vary between 11.0×10−9

and 27.1×10−9/site/year [20]. If we take the average of these values (19.5×10−9), we
arrive at a maximum evolutionary distance of 43.4 million years for our method. This is
approximately the divergence time of the Drosophila clade analyzed in Figure 6. Taxa
with lower substitution rates could, of course, be analyzed to correspondingly greater
evolutionary distances, but this rough calculation illustrates the caveat that Kr should
only be applied to closely related genomes. Given this proviso, our distance measure
gives biologically meaningful results on scales ranging from mitochondrial to metazoan
nuclear genomes.

Acknowledgements

We thank Peter Pfaffelhuber, Angelika Börsch-Haubold, and an anonymous reviewer
for comments that improved this manuscript.

98 B. Haubold, M. Domazet-Los̆o, and T. Wiehe

References

1. Aanensen, D.M., Spratt, B.G.: The multilocus sequence typing network: mlst.net. Nucleic
Acids Res. 33(Web Server issue) , W728–W733 (2005)

2. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: The enhanced suffix array and its applications to
genome analysis. In: Proceedings of the second workshop on algorithms in bioinformatics.
Springer, Heidelberg (2002)

3. Blaisdell, B.E.: A measure of the similarity of sets of sequences not requiring sequence
alignment. Proceedings of the National Academy of Sciences, USA 83, 5155–5159 (1986)

4. Bray, N., Pachter, L.: MAVID: Constrained ancestral alignment of multiple sequences.
Genome Research 14, 693–699 (2004)

5. Chapus, C., Dufraigne, C., Edwards, S., Giron, A., Fertil, B., Deschavanne, P.: Exploration
of phylogenetic data using a global sequence analysis method. BMC Evolutionary Biology 5,
63 (2005)

6. Dewey, C.N., Pachter, L.: Evolution at the nucleotide level: the problem of multiple whole-
genome alignment. Hum. Mol. Genet. 15(Spec. No. 1), R51–R56 (2006)

7. Efron, B.: Bootstrap methods: another look at the Jackknife. The Annals of Statistics 7, 1–26
(1979)

8. Eisen, J.A.: Phylogenomics: improving functional predictions for uncharacterized genes by
evolutionary analysis. Genome Research 8, 163–167 (1998)

9. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolu-
tion 39, 783–791 (1985)

10. Felsenstein, J.: PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the au-
thor. Department of Genome Sciences, University of Washington, Seattle (2005)

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, Cambridge (1997)

12. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison without alignment
using shortest unique substrings. BMC Bioinformatics 6, 123 (2005)

13. Haubold, B., Wiehe, T.: How repetitive are genomes? BMC Bioinformatics 7, 541 (2006)
14. Hervé, P., Delsuc, F., Lartillot, N.: Phylogenomics. Annual Review of Ecology, Evolution,

and Systematics 36, 541–562 (2005)
15. Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation.

Bioinformatics 18, 337–338 (2002)
16. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian

Protein Metabolism, vol. 3, pp. 21–132. Academic Press, New York (1969)
17. Kantorovitz, M.R., Robinson, G.E., Sinha, S.: A statistical method for alignment-free com-

parison of regulatory sequences. Bioinformatics 23, i249–i255 (2007)
18. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,

Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins,
D.G.: Clustal w and clustal x version 2.0. Bioinformatics 23(21), 2947–2948 (2007)

19. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction algorithm.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 698–710. Springer,
Heidelberg (2002)

20. Moriyama, E.N., Gojobori, T.: Rates of synonymous substitution and base composition of
nuclear genes in Drosophila. Genetics 130(4), 855–864 (1992)

21. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms.
ACM Comput. Surv. 39, 4 (2007)

22. R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2007) ISBN 3-900051-07-0

An Alignment-Free Distance Measure for Closely Related Genomes 99

23. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylge-
netic trees. Molecular Biology and Evolution 4, 406–425 (1987)

24. Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli,
S.V., Crabtree, J., Jones, A.L., Durkin, A.S., Deboy, R.T., Davidsen, T.M., Mora, M.,
Scarselli, M., Margarit y Ros, I., Peterson, J.D., Hauser, C.R., Sundaram, J.P., Nelson, W.C.,
Madupu, R., Brinkac, L.M., Dodson, R.J., Rosovitz, M.J., Sullivan, S.A., Daugherty, S.C.,
Haft, D.H., Selengut, J., Gwinn, M.L., Zhou, L., Zafar, N., Khouri, H., Radune, D., Dim-
itrov, G., Watkins, K., O’Connor, K.J., Smith, S., Utterback, T.R., White, O., Rubens, C.E.,
Grandi, G., Madoff, L.C., Kasper, D.L., Telford, J.L., Wessels, M.R., Rappuoli, R., Fraser,
C.M.: Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: impli-
cations for the microbial ”pan-genome”. Proc. Natl. Acad. Sci. USA 102(39), 13950–13955
(2005)

25. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila
phylogeny. Nature 450, 203–218 (2007)

26. Vinga, S., Almeida, J.: Alignment-free sequence comparison—a review. Bioinformatics 19,
513–523 (2003)

27. Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of nucleic acid and protein data banks.
Proceedings of the National Academy of Sciences, USA 80, 726–730 (1983)

28. Yang, K., Zhang, L.: Performance comparison between k-tuple distance and four model-
based distances in phylogenetic tree reconstruction. Nucleic Acids Res. 36(5), e33 (2008)

29. Yang, Z.: Computational Molecular Evolution. Oxford University Press, Oxford (2006)

Gene Team Tree:

A Compact Representation of All Gene Teams

Melvin Zhang and Hon Wai Leong

School of Computing, National University of Singapore

Abstract. The identification of conserved gene clusters is an important
step towards understanding genome evolution and predicting the func-
tion of genes. Gene team is a model for conserved gene clusters that takes
into account the position of genes on a genome. Existing algorithms for
finding gene teams require the user to specify the maximum distance
between adjacent genes in a team. However, determining suitable val-
ues for this parameter, δ, is non-trivial. Instead of trying to determine
a single best value, we propose constructing the gene team tree (GTT),
which is a compact representation of all gene teams for every possible
value of δ. Our algorithm for computing the GTT extends existing gene
team mining algorithms without increasing their time complexity. We
compute the GTT for E. coli K-12 and B. subtilis and show that E.
coli K-12 operons are recovered at different values of δ. We also describe
how to compute the GTT for multi-chromosomal genomes and illustrate
using the GTT for the human and mouse genomes.

1 Introduction

Biological evidence suggests that genes which are located close to one an-
other in several different genomes tend to code for proteins that have a func-
tional interaction [Snel et al., 2002]. Such regions are also commonly known as
conserved gene clusters. Computational studies done in Overbeek et al. [1999]
showed that functional dependency of proteins can be inferred by considering
the spatial arrangement of genes in multiple genomes. In the study of prokaryotic
genomes, the identification of conserved gene clusters is used in predicting oper-
ons [Ermolaeva et al., 2001] and detecting horizontal gene transfers [Lawrence,
1999]. Therefore, the identification of conserved gene clusters is an important
step towards understanding genome evolution and function prediction.

A popular model of conserved gene clusters is the gene team model [Béal et al.,
2004]. Current algorithms require the specification of the parameter δ, which is
the maximum distance between adjacent genes in a gene team. However, de-
termining suitable values for this parameter is non-trivial as it depends on the
arrangement of genes on the genome. As discussed in He and Goldwasser [2005],
a large value of δ may result in many false positives while an overly conservative
value may miss many potential conserved clusters. In addition, due to varying
rates of rearrangement, different regions of the genome may require different
values of δ to discover meaningful gene clusters. The value of δ also depends

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 100–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gene Team Tree: A Compact Representation of All Gene Teams 101

on the type of conserved gene clusters (pathways, regulons or operons) one is
interested in.

Our approach is to find a succinct way to represent all gene teams for every
value of δ and compute this representation efficiently. Subsequently, statistical
tests [Hoberman et al., 2005] or integration with other information on gene in-
teractions can be used to validate or rank the discovered teams.

The rest of this paper is structured as follows: Section 2 discusses other related
efforts in the literature. A formal problem definition is presented in Section 3,
followed by a detailed description of our method in Section 4. Section 5 demon-
strates the practicality of our methodology using real datasets. We summarize
our results and discuss future work in Section 6.

2 Related Work

The notion of a conserved gene cluster may seem intuitive, however, develop-
ing a formal definition which captures the essential biological characteristics
of such regions is non-trivial [Hoberman and Durand, 2005]. Intuitively, a con-
served gene cluster represents a compact region in each genome which contains a
large proportion of homologous genes. Due to the effect of rearrangement events,
the order of the genes in a conserved gene cluster is usually not conserved.

The gene team model [Béal et al., 2004] is the first formal model to make use
of the position of the genes on the genome. The original model assumes that
genomes are permutations, i.e. they do not contain duplicated genes. The model
was later extended in He and Goldwasser [2005] to handle general sequences,
which allows multiple copies of the same gene. Although the term homology
team was used in He and Goldwasser [2005] to refer to the extended model, for
simplicity we will refer to both of them as the gene team model.

Béal et al. [2004] gave an O(mn lg2 n) algorithm for finding the gene teams of
m permutations with n genes each. An O(n1n2) time algorithm was proposed
in He and Goldwasser [2005] for finding the gene teams for two sequences of
length n1 and n2 respectively. Both algorithms are similar and are based on the
divide-and-conquer paradigm.

In the experimental study presented in He and Goldwasser [2005], the ap-
proach used to determine an appropriate value of δ was to select a small number
of known operons and pick the minimum value of δ at which the selected operons
were reconstructed. There are two drawbacks with this method. Firstly, there
may not be any known operons in the genome we are interested in. Furthermore,
it is unclear how to select a representative set of known operons.

3 Problem Definition

3.1 Notations and Definitions

The following notations and definitions are adapted from He and Goldwasser
[2005].

102 M. Zhang and H.W. Leong

A homology family is a collection of genes which have descended from a com-
mon ancestral gene.

Let Σ denote the set of homology families, then each gene g is a pair (p, f)
where p ∈ R is the position of the gene and f ∈ Σ is the homology family
which the gene belongs to. The distance between two genes gi = (pi, fi) and
gj = (pj , fj) is defined as ∆(gi, gj) = |pi − pj |.

A gene order G is a sequence of genes 〈g1, g2, . . . , gn〉, in increasing order of
their position. A gene order is a permutation if each homology family appears at
most once. We use Σ(G) to denote the set of homology families which appears
in G.

Definition 1 (Witness and δ-set). A subsequence G′ of a gene order G is a
witness to a δ-set of homology families Σ′ ⊆ Σ if Σ(G′) = Σ′ and every pair of
adjacent genes in G′ are separated by a distance of at most δ.

Definition 2 (δ-team). A δ-team t, of a set of gene order G =
{G1, G2, . . . , Gm}, is a δ-set with witnesses in each gene order Gi, 1 ≤ i ≤ m,
and it is maximal with respect to subset inclusion of the witnesses. We use G(t)
to denote the set of witnesses of a δ-team t.

Example 1. Consider two gene orders G1 = 〈a1, b3, c5, d6, e9, c10, b11, a12, b13〉
and G2 = 〈c1, a3, d4, b6, e7, b8, c9, a11, d12〉 where the letters represent homol-
ogy families and the numbers in the subscript denote the position of the genes.
Then, the 2-teams of G1 and G2 are {a, c}, {a, b, c, d}, and {a, b, c, e}.

3.2 Problem Formulation

Given a set of m gene orders G = {G1, G2, . . . , Gm}, compute the set of δ-teams
for every possible value of δ, denoted by T .

Let GeneTeams(G, δ) denote the δ-teams of G, then formally,

T =
∞⋃

δ=0

GeneTeams(G, δ)

4 Our Approach: Gene Team Tree

A näıve approach is to apply a parameterized algorithm for every possible value
of δ but this is hopelessly inefficient when the parameter space is large.

There are two gross inefficiencies with the näıve approach. Firstly, not all
parameter values lead to new gene teams and secondly, gene teams computed
for one value of the parameter can be used to compute the gene teams for other
values.

Observe that as the maximum allowed gap length decreases, existing gene
teams are split into smaller teams. This allows us to represent the set of gene
teams for all possible values of δ compactly in a tree structure.

Gene Team Tree: A Compact Representation of All Gene Teams 103

Definition 3 (Gene Team Tree). The gene team tree (GTT) of a set of gene
orders G has as its nodes the δ-teams for all possible values of δ. The root of the
GTT is Σ and a gene team t′ is a child of a gene team t if t′ < t and there is
no other gene team t′′ such that t′ < t′′ < t, where t′ < t if the witnesses of t′

are subsequences of the witnesses for t.

Remark 1. The leaf nodes of the GTT are singletons and the number of leaves
in the GTT for a set gene orders G is

∑
f∈Σ

∏
G∈G occ(G, f), where occ(G, f) is

the number of genes in G from homology family f .

4.1 Basic GeneTeamTree Algorithm

Clearly, the largest possible gene team is Σ. Σ is a gene team when δ is greater
than or equal to the largest distance between adjacent genes in each of the
m gene orders. For a set of gene orders G, let MaxGap(G) denote the largest
distance between adjacent genes for every gene order in G.

Our algorithm GeneTeamTree takes in a set of gene orders G and returns
the GTT of G. Initially, we start with the gene team Σ(G). In each call to
GeneTeamTree, we construct a tree node v which stores the gene team. Then,
we compute MaxGap(G) − ε, which is the largest value of δ that will cause the
current gene team to be partitioned into smaller sub gene teams. We then make
use of the FindTeams algorithm [Béal et al., 2004; He and Goldwasser, 2005]
to partition t into a set of smaller gene teams T . For each gene team in T ,
recursively apply GeneTreamTree to get a tree of gene teams and make it a
subtree of v. Finally, the algorithm returns v, which is the root of the GTT. The
pseudocode for the algorithm is shown in Algorithm 1.

In practice, if the positions are integers, we set ε to be 1. This is the case in
our examples and experiments. Otherwise, ε can be set to some number that is
smaller than the distance between the closest pair of adjacent genes.

Algorithm 1. GeneTeamTree(G)
Ensure: Returns the GTT for G

team(v) := Σ(G)
children(v) := ∅
if | team(v)| > 1 then

δ := MaxGap(G)− ε
T := FindTeams(G, δ)
for each gene team t ∈ T do

children(v) := children(v) ∪GeneTeamTree(G(t))
end for

end if
return v

Example 2. Running the GeneTeamTree algorithm on the pair of gene order
G1 = 〈a1, b2, a6, c8, b9〉 and G2 = 〈c1, c4, b5, a6, b8〉 produces the tree shown in
Figure 1, where a gene team is represented by the pair of its witnesses.

104 M. Zhang and H.W. Leong

〈a1, b2, a6, c8, b9〉 , 〈c1, c4, b5, a6, b8〉δ=3

〈a6, c8, b9〉 , 〈c1, c4, b5, a6, b8〉δ=2

〈a6, c8, b9〉 , 〈c4, b5, a6, b8〉δ=1

〈b9〉 , 〈b8〉〈c8, b9〉 , 〈c4, b5〉δ=0

〈b9〉 , 〈b5〉〈c8〉 , 〈c4〉

〈a6〉 , 〈a6〉

〈c8〉 , 〈c1〉

〈a1, b2〉 , 〈b5, a6, b8〉δ=1

〈b2〉 , 〈b8〉〈a1, b2〉 , 〈b5, a6〉δ=0

〈b2〉 , 〈b5〉〈a1〉 , 〈a6〉

Fig. 1. GTT for 〈a1, b2, a6, c8, b9〉 and 〈c1, c4, b5, a6, b8〉 where a gene team is repre-
sented by the pair of its witnesses and the value of δ used to split each gene team is
shown in subscripts

4.2 Correctness of GeneTeamTree

Let GeneTeamTree(G) denote the result of running algorithm
GeneTeamTree on the set of gene orders G. In order to show that the
algorithm GeneTeamTree is correct, we need to prove that

GeneTeamTree(G) = T

First, we show that only certain values δ will lead to new gene teams.

Lemma 1

GeneTeams(G, δ)

{
= {Σ} if δ ≥ MaxGap(G),
�= {Σ} otherwise

Proof Since MaxGap(G) is the largest distance between adjacent genes, when
δ ≥ MaxGap(G), Σ clearly satisfies the definition of a gene team.

Otherwise, there exists a pair of adjacent genes g, g′ such that ∆(g, g′) =
MaxGap(G). g and g′ cannot be in the same gene team, thus Σ cannot be a
gene team.

The above result can be generalized to an arbitrary gene team, therefore not all
values of δ lead to new gene teams. There are certain critical values of δ which
lead to the formation of new gene teams, these are the values of δ which are just
less than the maximum gap between adjacent genes in a gene team.

The following lemma shows that once a pair of genes is in two different gene
teams for a particular value of δ say δ1, then they will always be in different
gene teams when the value of δ decreases to say δ2. This allows us to apply a
divide-and-conquer strategy because gene teams form independent subproblems.

Gene Team Tree: A Compact Representation of All Gene Teams 105

Lemma 2. If δ1 > δ2 and GeneTeams(G, δ1) = T1 and GeneTeams(G, δ2) =
T2 then for any two genes g and g′ if they are in the different gene teams in T1

they are also in different gene teams in T2.

Proof. Suppose on the contrary that g and g′ are in different gene teams in T1

but they are in the same gene team in T2. Let t be the gene team in T1 that
contains g and t′ be the gene team in T1 that contains g′. Since g and g′ are in
the same gene team in T2 it follows that t ∪ t′ must also be a gene team in T1.
This contradicts the maximality of t and t′.

Theorem 1 (GeneTeamTree is correct)

GeneTeamTree(G) = T

Proof GeneTeamTree finds gene teams for values of δ in decreasing order.
Lemma 1 ensures that by using the value of δ = MaxGap(G) − ε to partition
the current gene team, we do not miss out on any gene teams. After partitioning
the gene team t, we can consider the sub gene teams in a divide-and-conquer
fashion since each sub gene team is independent of the others as a consequence
of Lemma 2.

4.3 Time Complexity of GeneTeamTree

Given set of m gene orders, the time complexity of FindTeams is O(mn lg2 n)
[Béal et al., 2004] when the gene orders are permutations of length n and
O(nm

max) for general sequence [He and Goldwasser, 2005], where nmax is the
length of the longest gene order.

A simple implementation of MaxGap perform a linear scan over each gene
order to determine the largest distance between adjacent genes. It has a time
complexity of O(mnmax).

Let si denote the size of the ith gene team generated by FindTeams and let
T (n) denote the time complexity of GeneTeamTree, then

T (n) =

{
c if n = 1,∑k

i=1 T (si) + time for FindTeams + time for MaxGap otherwise

The running time for FindTeams dominates that of MaxGap. The worst
case occurs when FindTeams splits the gene team into two uneven partitions.

T (n) = T (1) + T (n − 1) + time for FindTeams + time for MaxGap

=

{
O(mn2 lg2 n) if the input gene orders are permutations,
O(nm+1

max) otherwise

4.4 Speeding Up GeneTeamTree

The basic algorithm presented in the previous section treats the FindTeams

procedure as a black box. It turn out that we can directly compute the GTT
within FindTeams to reduce the time complexity.

106 M. Zhang and H.W. Leong

The key idea is to adjust the value for δ dynamically during the recursion
in the FindTeams procedure. When FindTeams reports a gene team t, in-
stead of terminating the recursion, we will dynamically reduce the value of δ to
MaxGap(G) − ε and continue recursing. Initially, the value of δ is set to ∞.

The improved algorithm, GeneTeamTreeFast, is presented in Algorithm 2
and 3.

Algorithm 2. GeneTeamTreeFast(G)
Ensure: Returns the GTT of G

team(v) := ∅ {Setup a dummy root node}
children(v) := ∅
return ModifiedFindTeams(G,∞, v)

Algorithm 3. ModifiedFindTeams(G, δ, u)
δ′ := MaxGap(G)− ε
if δ′ ≤ δ then
{Σ(G) is a gene team}
team(v) := Σ(G)
children(v) := ∅
children(u) := children(u) ∪ {v}
ModifiedFindTeams(G, δ′, v)
return v

else
G′ := ExtractRun(G, δ)
ModifiedFindTeams(G′, δ, u)
ModifiedFindTeams(G − G′, δ, u)
return u

end if

Recall that ExtractRun [Béal et al., 2004] takes in as input the set of gene
orders G and the parameter δ. It splits one of the gene orders of G across a gap
of length greater than δ into two subsequences, keeping the shorter subsequence,
G′. It then returns the set of gene orders obtained by extracting from each gene
order in G the subsequence containing the same homology families as G′.

In order for our GeneTeamTreeFast algorithm to be efficient, the com-
plexity of MaxGap should be at most that of ExtractRun. The complex-
ity of ExtractRun in He and Goldwasser [2005] is O(mnmax), therefore the
simple linear scan implementation of MaxGap suggested in the previous sec-
tion suffices. However, the complexity of ExtractRun in Béal et al. [2004] is
O(mp lg p) where p is the size of the smaller sub problem.

We can reduce the time complexity of MaxGap by storing the length of
the gaps between adjacent genes in a priority queue. Then, the complexity of
MaxGap becomes O(1), however we incur overhead maintaining the priority
queue.

Creating the priority queue for the sub problem of size p requires mp inser-
tions. The priority queue for the sub problem of size n − p can be obtained

Gene Team Tree: A Compact Representation of All Gene Teams 107

by modifying the original priority queue. Extracting a single gene may involve
merging two gaps, and is accomplished by deleting the two gaps and inserting
the new combined gap into the priority queue. The total number of insertions
and deletions needed to update the priority queue is O(mp). Using a binary
heap for our priority queue requires O(lg n) operations for deletions/insertions.
Therefore, the total overhead is O(mp lg n), which is more than O(mp lg p).

Hence, the running time of our algorithm for m permutation is given by the
following recurrence relation,

T (n) = T (n − p) + T (p) + cmp lg n, 1 ≤ p ≤ n/2

Similar to the analysis presented in Béal et al. [2004], in the worst case, p = n/2
and T (n) = O(mn lg2 n).

We analyzed the expected running time based on the assumption that at each
stage , the size of the smaller subproblem, p, is uniformly distributed between 1
and n/2. Let E(n) denote the expected running time of the algorithm. Then,

E(n) =
1

n/2

n/2∑
p=1

E(n − p) + E(p) + cmp lg n

nE(n) = 2
n/2∑
p=1

E(n − p) + E(p) + cmp lg n

nE(n) − (n − 2)E(n − 2) = 2E(n − 1) + 2E(n − 2) + cmn lg n

nE(n) = 2E(n − 1) + nE(n − 2) + cmn lg n

E(n) ≥ n + 2
n

E(n − 2) + cm lg n

≥ cm(n + 2)
(n−3)/2∑

x=1

lg(2x + 1)
2x + 1

≥ cm(n + 2)
∫ (n−1)/2

1

lg(2x + 1)
2x + 1

dx

= Ω(mn lg2 n)

Since T (n) = O(mn lg2 n) in the worst case, thus E(n) = O(mn lg2 n). There-
fore, the expected running time is Θ(mn lg2 n).

Our improved GeneTeamTreeFast algorithm has a time complexity of
O(mn lg2 n) for m permutations of length n and O(nm

max) for m sequences of
length at most nmax. Therefore, our algorithms gracefully extends existing Find-

Teams algorithms without increasing their time complexity.

4.5 Handling Multiple Chromosomes

A single chromosome can be directly represented using a gene order, however
many genomes are multi-chromosomal. In practice, we would like to compare

108 M. Zhang and H.W. Leong

entire multi-chromosomal genomes and genes in a gene team should not be spread
across several chromosomes.

A simple strategy to map multi-chromosomal genomes into a single linear gene
order is to order the chromosomes linearly and insert appropriate gaps between
the chromosomes. The order does not matter since the chromosomes will be
separated immediately.

Let lmax be the length of the longest chromosome, then it suffices to insert
a gap of length lmax + ε between chromosomes. Base on the definition of the
GTT, the root consists of all the genes in the genome and the children of the
root are GeneTeams(G, lmax). This will separate the genes in each chromosome
but allows teams which consist of an entire chromosome. The subsequent sub
problems will only be within a single chromosome.

5 Experiments

5.1 GTT for E. coli K-12 and B. subtilis

Similar to He and Goldwasser [2005], we use the notion of a cluster of orthol-
ogous groups (COG) [Tatusov et al., 2001] as an approximation of a homology
family.

Using the data from He and Goldwasser [2005], we computed the GTT forE. coli
K-12 and B. subtilis using the starting position of each gene (in base pairs) as its
position. There are 1137 homology families in the dataset with 2332 genes in E. coli
K-12 and 2339 genes in B. subtilis. The time taken to compute the GTT is around
4 seconds on a Intel Core 2 Duo E6550 (2.33GHz) processor running Linux. The
GTT consists of 19712 nodes, a portion of the GTT is illustrated in Figure 2.

In order to validate our earlier claim that a single value of δ is inadequate,
we compared the gene teams in our GTT against a set of known E. coli K-
12 operons from Gama-Castro et al. [2008]. We use the Jaccard index [Jaccard,
1908] to measure the similarity between a gene team and an operon.

Definition 4. The Jaccard index of two sets A and B is defined as |A∩B|
|A∪B| . It

gives a value between zero and one, where a value of one is a perfect match.

The Jaccard score of an operon is the highest Jaccard index between the operon
and some gene team in our GTT. Figure 3 shows a histogram of the Jaccard

1137

624 762

20 13 72 16 11 11 11 31 14 17 15 19 400 10 79 72 106

16 40 15

40

23 28

21

15 10

15

27

25

10

15

14

10

10

10

10 27

22

21

16

14

13

11

10

17

10

13

11

10

81 46 11 38 266 14

70

48 10

11 11

10

18

16

14 10

13

206 21 12 12 10

201

184 14

18 15 13 144

12 15 10 12

14

12

10

11

11

13

12

77

10 16 12

23 12

11

19 44

10 20

17

15

14

13

10

12 13 744

739

13 10 12 16 12 15 10 34 11 13 39 10 10 12 13 20 10 14 12 11 11 10

10 10 10 30

24

13

10 10 11 18

17

16

10

Fig. 2. GTT for E. coli K-12 and B. subtilis showing gene teams with at least 10 genes

Gene Team Tree: A Compact Representation of All Gene Teams 109

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 o

pe
ro

ns

Jaccard Score

Fig. 3. Histogram of Jaccard scores for 471 operons from Gama-Castro et al. [2008]

scores for the gene teams corresponding to known operons. We only include
operons with at least two genes and has at least one gene that is included in our
study. There are a total of 471 operons that satisfy the above conditions.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140

δ
va

lu
e

138 gene teams, one for each of the recovered operons

δ=1900

Fig. 4. [δmin, δmax] for recovered operons, arranged in increasing δmin

110 M. Zhang and H.W. Leong

We consider an operon to be recovered if its Jaccard score is more than 2/3.
Out of the 471 operons, 138 operons (29.3%) are recovered. Out of the 138 recov-
ered operons, we further analyzed at what range of δ values the corresponding
gene teams will be formed (see Figure 4).

Observe that a gene team t is not only a δ-team, but it is really a [δmin, δmax]-
team, where [δmin, δmax] is the range of δ values for which t is a δ-team. From
the definition of GTT, δmin = MaxGap(G(t)) and δmax = MaxGap(G(t′)) − ε,
where t′ is the parent of t in the GTT.

Figure 4 shows the range of δ values for the gene teams which correspond to
each one of the 138 recovered operons, the ranges are sorted in increasing order
of δmin.

He and Goldwasser [2005] suggested setting δ to 1900 for the analysis of this
dataset. Out of the 138 operons, only 81 (58.7%) can be recovered using a value
of 1900. Figure 5 shows the number of operons that can be recovered for various
values of δ. It supports our claim that no single value of δ can generate the gene
teams which match the entire set of recovered operons as at most 100 operons
can be recovered for any single value of δ.

5.2 GTT for Human and Mouse

We downloaded the human and mouse genomes from the MSOAR [Fu et al.,
2007] website and formed homology families using the MSOAR hit graph. There
are 12662 shared homology families, with 14193 genes in the human genome and
14442 genes in the mouse genome.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000

N
um

be
r

of
 r

ec
ov

er
ed

 o
pe

ro
ns

δ

Fig. 5. Number of recovered operons for different values of δ

Gene Team Tree: A Compact Representation of All Gene Teams 111

12662

368 380 529 323 175 111 107 121 247 200 135 283 148 197 150 164 106 259 244 241 104 157 214 217 191 132 274 199 224 174 195 213 133 128 308 108 119 103 170 136 262 799 148 338 139 401 154 449

363

362

341

340

269

172

172

107

380

376

192 186

135

102

101

185

168

524

520

520

520

438

342

251

245

150

120

119

323

322

238

219

156

173

172

169

139

132

128

127

124

118

100

110

105

103 245

186

185

104

117

117

117

109

105

280

279

278

173

102

101

147

146

143

106

105

167

148

133

133

132

118

109

149 163

162

216

216

216

215

122

122

121

175

152

131

115

102 109 211

210

210

125

121 185

145

145

145

143

131

131

127

127

149 198

197

156

140

132

223

223

223

172

160

133

104

172

171

149

148

192

188

184

142

102

213

213

117

132

131

126

123

117

110

101 243

242

130 112

125

102

111

110

119

117

117

114

169

162

149

122

133

132

261

258

187

187

101

100

798

796

318 226 201

221

160

225

173

149

110

200

152

145

336

336

336

336

179

126

114

118 401

130 271

217

118

133

128

125

130 170

170

170

Fig. 6. GTT for human and mouse genomes showing gene teams with more than 100
genes

We computed the GTT for these two genomes using the method for handling
multi-chromosomal genomes discussed in Section 4.5. The time taken to compute
the GTT is around 5 seconds on a Intel Core 2 Duo E6550 (2.33GHz) processor
running Linux. The GTT consists of 35874 nodes, a portion of the GTT is
illustrated in Figure 6.

This experiment shows that our method is practical for handling large multi-
chromosomal genomes.

6 Conclusion and Future Work

The gene team tree represents the set of all gene teams for every possible value
of the parameter δ. Organising the gene teams in the form of a tree allows us
to visualize the relationship between the various gene teams and makes explicit
the structure of the gene teams. We have developed an efficient algorithm which
computes the gene team tree for a given set gene orders. We have also showed
that our algorithm is practical by running our algorithm on real datasets. Our
analysis of the gene teams which correspond to known operons in E. coli showed
that no one single value of δ can produce all of these gene teams.

We plan to explore other applications of GTT as a hierarchal structure which
represents genomic structures that are conserved during evolution. One such
application which we are working on is applying GTT to the problem of ortholog
assignment.

References

Béal, M.-P., Bergeron, A., Corteel, S., Raffinot, M.: An algorithmic view of gene teams.
Theor. Comput. Sci. 320(2-3), 395–418 (2004)

Ermolaeva, M.D., White, O., Salzberg, S.L.: Prediction of operons in microbial
genomes. Nucleic Acids Res. 29(5), 1216–1221 (2001)

Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: Msoar: A high-throughput
ortholog assignment system based on genome rearrangement. Journal of Computa-
tional Biology 14(9), 1160–1175 (2007)

112 M. Zhang and H.W. Leong

Gama-Castro, S., Jimnez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Pealoza-
Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muiz-Rascado, L., Martnez-
Flores, I., Salgado, H., Bonavides-Martnez, C., Abreu-Goodger, C., Rodrguez-
Penagos, C., Miranda-Ros, J., Morett, E., Merino, E., Huerta, A.M., Trevio-
Quintanilla, L., Collado-Vides, J.: Regulondb (version 6.0): gene regulation model of
escherichia coli k-12 beyond transcription, active (experimental) annotated promot-
ers and textpresso navigation. Nucleic Acids Res. 36(Database issue), D120–D124
(2008)

He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of ho-
mology families. Journal of Computational Biology 12(6), 638–656 (2005)

Hoberman, R., Durand, D.: The incompatible desiderata of gene cluster properties. In:
McLysaght and Huson, pp. 73–87 (2005)ISBN 3-540-28932-1

Hoberman, R., Sankoff, D., Durand, D.: The statistical analysis of spatially clustered
genes under the maximum gap criterion. Journal of Computational Biology 12(8),
1083–1102 (2005)

Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Société Vau-
doise des Sciences Naturelles 44, 223–270 (1908)

Lawrence, J.: Selfish operons: the evolutionary impact of gene clustering in prokaryotes
and eukaryotes. Curr. Opin. Genet. Dev. 9(6), 642–648 (1999)

McLysaght, A., Huson, D.H. (eds.): RECOMB 2005. LNCS (LNBI), vol. 3678. Springer,
Heidelberg (2005)

Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene
clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96(6), 2896–2901
(1999)

Snel, B., Bork, P., Huynen, M.A.: The identification of functional modules from the
genomic association of genes. Proc. Natl. Acad. Sci. USA 99(9), 5890–5895 (2002)

Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T.,
Rao, B.S., Kiryutin, B., Galperin, M.Y., Fedorova, N.D., Koonin, E.V.: The COG
database: new developments in phylogenetic classification of proteins from complete
genomes. Nucl. Acids Res. 29(1), 22–28 (2001)

Integrating Sequence and Topology for Efficient and
Accurate Detection of Horizontal Gene Transfer

Cuong Than, Guohua Jin, and Luay Nakhleh�

Department of Computer Science, Rice University, Houston, TX 77005, USA
nakhleh@cs.rice.edu

Abstract. One phylogeny-based approach to horizontal gene transfer (HGT) de-
tection entails comparing the topology of a gene tree to that of the species tree,
and using their differences to locate HGT events. Another approach is based on
augmenting a species tree into a phylogenetic network to improve the fitness of
the evolution of the gene sequence data under an optimization criterion, such as
maximum parsimony (MP). One major problem with the first approach is that
gene tree estimates may have wrong branches, which result in false positive esti-
mates of HGT events, and the second approach is accurate, yet suffers from the
computational complexity of searching through the space of possible phyloge-
netic networks.

The contributions of this paper are two-fold. First, we present a measure that
computes the support of HGT events inferred from pairs of species and gene
trees. The measure uses the bootstrap values of the gene tree branches. Second,
we present an integrative method to speed up the approaches for augmenting
species trees into phylogenetic networks.

We conducted data analysis and performance study of our methods on a data set
of 20 genes from the Amborella mitochondrial genome, in which Jeffrey Palmer
and his co-workers postulated a massive amount of horizontal gene transfer. As ex-
pected, we found that including poorly supported gene tree branches in the analysis
results in a high rate of false positive gene transfer events. Further, the bootstrap-
based support measure assessed, with high accuracy, the support of the inferred
gene transfer events. Further, we obtained very promising results, in terms of both
speed and accuracy, when applying our integrative method on these data sets (we
are currently studying the performance in extensive simulations). All methods have
been implemented in the PhyloNet and NEPAL tools, which are available in the
form of executable code from http://bioinfo.cs.rice.edu.

1 Introduction

While the genetic material of an organism is mainly inherited through lineal descent
from the ancestral organism, it has been shown that genomic segments in various groups
of organisms may be acquired from distantly related organisms through horizontal
DNA, or gene, transfer (HGT). It is believed that HGT is ubiquitous among prokary-
otic organisms (24; 6) and plays a significant role in their genomic diversification (20).
Recent studies have also demonstrated evidence of massive HGT in various groups of
plants (3; 4).

� Corresponding author.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 113–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 C. Than, G. Jin, and L. Nakhleh

A B C D

X Y

A B C D A B C D

(a) (b) (c)

Fig. 1. (a) A phylogenetic network with a single HGT edge from X to Y , ancestors of taxa B
and C, respectively. (b) The underlying species tree, which models the evolution of vertically
transmitted genomic regions. (c) The tree that models the evolution of horizontally transferred
genomic regions. The phylogenetic network contains the two trees, in the sense that each of the
trees can be obtained from the network by removing all but one incoming edge (branch) for each
node in the network.

When HGT occurs among organisms, the evolution of their genomes is best modeled
as a phylogenetic network (19; 15) which can be viewed as the reconciliation of the
evolutionary trees of the various genomic segments, typically referred to as gene trees.
Figure 1(a) shows an example of a phylogenetic network on four taxa in the presence
of an HGT from X , an ancestor of taxon B, to Y , an ancestor of taxon C. In this
scenario, genomic regions that are not involved in the horizontal transfer are inherited
from the ancestral genome, and their evolution is modeled by the tree in Figure 1(b),
while horizontally transferred regions in C’s genome are acquired from X , and their
evolution is modeled by the tree in Figure 1(c).

As illustrated in Figure 1, the occurrence of HGT may result in gene trees whose
topologies are discordant (the trees in (b) and (c)). Detecting discordance among gene
trees, particularly with respect to a species tree, and reconciling them into a phyloge-
netic network, are the fundamental principles on which phylogeny-based HGT detec-
tion approaches are built. Several algorithms and software tools based on this approach
have been introduced recently (e.g., (8; 22; 2)), all of which infer HGT events by com-
paring the topologies (shapes) of trees.

A major confounding factor that negatively affects the accuracy of phylogeny-based
methods is that reconstructed species/gene trees usually contain error in the form of
wrong branches. These errors result in species/gene tree incongruities, thus triggering
phylogeny-based methods to make false predictions of HGT events (29). For example,
the incongruence between the two tress in Figure 1 could have arisen simply due to
poor reconstruction of the gene tree, even though no HGT was involved. In general,
the performance of phylogeny-based methods, in terms of both accuracy and speed,
is negatively affected by several factors, which include errors in the estimated trees
and the exponential space of potential solutions (28; 29). In this paper we address this
confounding factor by devising a method that estimates the support of inferred HGT
events by using the bootstrap values of the gene tree branches.

Recently, a set of methods were devised to estimate HGT events by augmenting
a species tree into a phylogenetic network to improve the fitness of evolution of the
gene’s sequence data based on the maximum parsimony (MP) criterion (21; 13). While
yielding promising results, these methods were very slow, since the problem of inferring
a phylogenetic network under the MP criterion is NP-hard and even hard to approximate

Integrating Sequence and Topology 115

(11; 14). In this paper, we present a new integrative method for improving the speed
of the MP-based methods by first conducting a topology-based analysis, based on the
topology of the tree inferred from the gene’s sequences, and then screening the inferred
events based on the MP criterion.

We have implemented both approaches and analyzed a data set of 20 genes that ex-
hibited massive HGT in the basal angiosperm Amborella according to (4). First, we
demonstrated the effects of error in the reconstructed gene trees on the estimates of
gene transfer. We found that including poorly supported gene tree branches in the anal-
ysis results in a high rate of false positives. Second, the support measure assessed, with
high accuracy, the support of the gene transfers inferred by the topology-based analysis.
Third, the integrative method, that combines topology comparison with the MP crite-
rion, detected efficiently all but one of HGT edges that were postulated by the authors.
Further, our approach detected new candidate HGTs, with high support. The combined
accuracy and efficiency of our approach, achieved by integrating topological analysis
with sequence information, will enable automated detection of HGT in large data sets.

2 Materials and Methods

2.1 Topology-Based HGT Detection and the RIATA-HGT Tool

When HGT occurs, the evolutionary history of the genomes may be more appropri-
ately represented by a phylogenetic network, which is a rooted, directed, acyclic graph
(rDAG) that extends phylogenetic trees to allow for nodes with more than a single
parent (1; 19; 15; 9). The phylogeny-based HGT reconstruction problem seeks the phy-
logenetic network with minimum number of HGT edges (equivalently, the minimum
number of nodes that have more than a single parent), to reconcile the species and gene
trees. The minimization requirement simply reflects a parsimony criterion: in the ab-
sence of any additional biological knowledge, the simplest solution is sought. In this
case, the simplest solution is one that invokes the minimum number of HGT events to
explain tree incongruence.

Definition 1. (The HGT Detection Problem)

Input: Species tree ST and gene tree GT , both of which are rooted.
Output: A set with the fewest directed HGT edges, each of which is posited between
a pair of branches of ST , such that the resulting phylogenetic network contains the
gene tree GT .

As indicated above, the resulting network is an rDAG, where the network’s branches
that are also branches in ST are directed away from the root, and the HGT edges are
directed as indicated by their description. For example, the phylogenetic network in
Figure 1(a) is a solution to the HGT Detection Problem if we consider the trees in 1(b)
and 1(c) to be the species and gene trees, respectively, since it has a smallest set of HGT
edges (one, in this case) and contains the gene tree. Notice that in this case the gene tree
cannot be reconciled with the species tree without HGT edges.

Several heuristics for solving the problem have been recently introduced, e.g., (18;
8; 7; 23; 17; 2; 10; 22). As mentioned above, the performance of methods following this

116 C. Than, G. Jin, and L. Nakhleh

approach, in terms of both accuracy and speed, is negatively affected by several factors,
which include errors in the estimated trees and the exponential space of potential solu-
tions (28; 29). We have recently addressed these issues and extended the RIATA-HGT
method (22) so that it detects HGT in pairs of trees that are not necessarily binary, and
computes multiple minimal solutions very efficiently (27).

2.2 Assessing the Support of HGT Edges

As mentioned above, topology-based HGT detection methods are sensitive to error in
the inferred trees, as illustrated on simulated data sets and reported in (28; 29) and
on biological data sets, which we report here. In this paper, we propose a measure of
the support of an inferred HGT edge based on the bootstrap values of the gene tree
branches. Roughly speaking, the support value of HGT edge X → Y in the species
tree, where Y ′ is the sibling of Y , is derived from the bootstrap values of the gene tree
branches that separate the clade under Y from the clade under Y ′. The rationale behind
the idea is that if Y ′ and Y are well separated in the gene trees (i.e., some branches
in the path from Y to Y ′ have high bootstrap values), an HGT is necessary to move
Y away from Y ′). For example, the support of HGT edge X → Y in Figure 2 is
calculated based on the bootstrap values of the branches separating B from A in the
gene tree.

However, since trees are not necessarily binary in general, and given that multiple
HGT edges may involve branches under X or Y , the calculation is more involved (e.g.,
see Figure 3) and requires a formal treatment, which we now provide.

Given a species tree ST , a gene tree GT , and a set Ξ of HGT edges, create a network
N by adding every edge in Ξ to ST . We create two trees ST ′ and ST ′′ from N , as
follows:

A DC EB

XY
Z

A DC EB

XY

Z

A DC EB

XY
Z

(a) (b) (c)

Fig. 2. An illustration of computing the support value of an HGT edge. In this case, the support
of HGT edge X → Y added on the species tree, resulting in the network in (a), is calculated
based on the bootstrap of the branches that separate the “moving clade” rooted at Y (which, in
this case, is the clade that contains the single leaf B) from its sister clade (which, in this case, is
the clade that contains the single leaf A) in the gene tree (b). The species tree is depicted by the
solid lines in (a), and the gene tree by the solid lines in (b). The tree in (b), along with all internal
nodes, including nodes Y and Z, is the tree ST ′ used in the procedure for computing the support
value, whereas the tree in (c), along with all internal nodes, including nodes X and Y , is the tree
ST ′′ used in the procedure. Notice that nodes Y and Z in (b), as well as nodes X and Y in (c)
have in-degree and out-degree 1.

Integrating Sequence and Topology 117

h1

h3h2

CA ED FB

u v

wx
y z

r

A B C

u
v
x

y

D E F

r
z

w

(a) (b)

Fig. 3. An illustration of calculating support values of HGT edges when multiple HGT edges are
involved. The HGT edges (arrows) h1, h2, and h3, are posited between pairs of branches (lines)
in the species tree ST resulting in the phylogenetic network N , part of which is shown in (a).
When a genomic segment is transferred across all these three HGT edges, the evolutionary history
of that segment in the six taxa A, B, C, D, E, and F is represented by the two clades in (b).
Further, these two clades and their internal nodes are part of the tree ST ′ that is generated in the
first step of the support calculation. The tree ST ′′ is obtained from the tree ST in (a) by adding
the endpoints of all HGT edges (the solid circles), but removing the HGT edges themselves. The
support of h1 is derived from the bootstrap support of the gene tree branches that separate the
MRCA of set P of leaves (which, in this case, is the set of leaves in clades B and C combined)
and the MRCA of set Q of leaves (which, in this case, is the set of leaves in clades D, E, and F
combined). The support of h2 is derived from the bootstrap values of the gene tree branches that
separate the MRCA of set P of leaves (in this case, the leaves of clade B) and the MRCA of set
Q of leaves (in this case, the leaves of clade A). The support of h3 is derived from the bootstrap
support of the gene tree branches that separate the MRCA of set P of leaves (in this case, the
leaves of clade D) and the MRCA of set Q of leaves (in this case, the leaves in clades B and C
combined).

– A tree ST ′ is built from N in such a way that for each edge X → Y in Ξ , this
edge is kept, and the other edge incident into Y is deleted. The tree in Figure 2(b),
including nodes Y and Z is the tree ST ′ obtained from the network in Figure 2(a).

– A tree ST ′′ is built from N in a similar fashion, but edge X → Y is deleted while
the other edge incident into Y is kept. The tree in Figure 2(c), including nodes X
and Y is the tree ST ′′ obtained from the network in Figure 2(a).

Notice that both trees ST ′ and ST ′′ have nodes of in-degree and out-degree 1. Retaining
these nodes in these two trees ensures the well-definedness of the procedure that we will
describe below for computing the support of HGT edge X → Y . Note that ST ′ and
ST ′′ can have nodes whose in-degree and out-degree are both 1. One important fact
about ST ′ and ST ′′ that is necessary for our method for assessing HGT support is that
they have the same set of nodes. See Figure 3 for an illustration. We denote by LT (v)
the set of leaves under node v in a tree T ; i.e., the set of leaves to which the paths
from the root of T must go through node v. We define the support of an HGT edge
h = X → Y , which we denote by b(h), assuming the bootstrap support of the gene
tree branches have been computed.

Our task is to find the path of edges between the “moving clade” (the clade of taxa
this is “moved” in the HGT event) and its sister clade in the gene tree. In Figure 2,
P = {B} and Q = {A}. We define two sets of leaves: P , which is the leaf-set of

118 C. Than, G. Jin, and L. Nakhleh

the moving clade, and Q, which is the leaf-set of the moving clade’s sister clade. More
formally, P = LST ′(Y), and Q is defined as follows:

1. Let Y ′ = Y .
2. Let node p be the parent of Y ′ in ST ′′.

(a) If LST ′(p) �= ∅, then Q = LST ′(p).
(b) Else, let Y ′ = p, and go back to step (2).

To illustrate these sets from Figure 3:

– For HGT edge h1: P contains only the leaves in clades B and C, and Q contains
only the leaves in clades D, E and F .

– For HGT edge h2: P contains only the leaves in clade B, and Q contains only the
leaves in clade A.

– For HGT edge h3: P contains only the leaves in clade D, and Q contains only the
leaves in clades B and C.

In this example, we get the set Q after only one iteration of the procedure. The need for
repeating Step 2 lies in the case where all siblings of Y are moved by HGT events.

Now that we have computed the sets P and Q of leaves, let p and q be the most
recent common ancestor nodes of P and Q, respectively, in the gene tree. Let E be the
set of branches in the gene tree between nodes p and q. The support value of the HGT
edge h is

b(h) = max
e∈E

s(e), (1)

where s(e) is the bootstrap value of the branch e in the gene tree. We choose to use
the maximum bootstrap value of a branch on the path since that value alone determines
whether the donor and recipient involved in an HGT edge truly form a clade in the gene
tree. Notice that averaging all values may not work, since, for example, if the path has
many branches, only one of which has very high support and the rest have very low
support, averaging would reflect low support for the HGT edge.

In case the species tree branches have bootstrap support values associated with them,
these can also be incorporated as follows for HGT edge h : X → Y . Let Z be the
MRCA of X and Y in the species tree, and let E ′ be the set of branches in the species
tree on the paths from Z to X and from Z to Y . Then, Formula (1) can be modified to
become

b(h) = min{max
e∈E

s(e), max
e′∈E′

s(e′)}, (2)

where s(e) is the bootstrap value of the gene tree branch for e ∈ E and the species tree
branch for e′ ∈ E ′.

2.3 Parsimony-Based HGT Detection and the NEPAL Tool

The relationship between a phylogenetic network and its constituent trees is the basis
for the MP extension to phylogenetic networks described in a sequence of papers by
Jin, Nakhleh and co-workers (21; 11; 13; 14), which we now review briefly.

The Hamming distance between two equal-length sequences x and y, denoted by
H(x, y), is the number of positions j such that xj �= yj . Given a fully-labeled tree

Integrating Sequence and Topology 119

T , i.e., a tree in which each node v is labeled by a sequence sv over some alphabet
Σ, we define the Hamming distance of a branch e ∈ E(T) (E(T) denotes the set of
all branches in tree T), denoted by H(e), to be H(su, sv), where u and v are the two
endpoints of e. We now define the parsimony length of a tree T .

Definition 2. The parsimony length of a fully-labeled tree T , is
∑

e∈E(T) H(e). Given
a set S of sequences, a maximum parsimony tree for S is a tree leaf-labeled by S and
assigned labels for the internal nodes, of minimum parsimony length.

Given a set S of sequences, the MP problem is to find a maximum parsimony phylo-
genetic tree T for the set S. The evolutionary history of a single (non-recombining)
gene is modeled by one of the trees contained inside the phylogenetic network of the
species containing that gene. Therefore the evolutionary history of a site s is also mod-
eled by a tree contained inside the phylogenetic network. A natural way to extend the
tree-based parsimony length to fit a dataset that evolved on a network is to define the
parsimony length for each site as the minimum parsimony length of that site over all
trees contained inside the network.

Definition 3. The parsimony length of a network N leaf-labeled by a set S of se-
quences, is

NCost(N, S) :=
∑

si∈S(minT∈T (N) TCost(T, si))

where TCost(T, si) is the parsimony length of site si on tree T .

Notice that as usually large segments of DNA, rather than single sites, evolve together,
Definition 3 can be extended easily to reflect this fact, by partitioning the sequences
S into non-overlapping blocks bi of sites, rather than sites si, and replacing si by bi

in Definition 3. This extension may be very significant if, for example, the evolution-
ary history of a gene includes some recombination events, and hence that evolutionary
history is not a single tree. In this case, the recombination breakpoint can be detected
by experimenting with different block sizes. Based on this criterion, we would want
to reconstruct a phylogenetic network whose parsimony length is minimized. In the
case of horizontal gene transfer, a species tree that models vertical inheritance is usu-
ally known; e.g., see (16). Hence, the problem of reconstructing phylogenetic networks
in this case becomes one of finding a set of edges whose addition to the species tree
“best explains” the horizontal gene transfer events, which is defined as the θ-FTMPPN
problem in (13). We have implemented heuristics to solve this problem in the NEPAL
software tool.

Jin et al. demonstrated the high accuracy of HGT detection by solving the θ-FTMPPN
problem on a wide array of simulated and biological data sets (13). However, the major
drawback of the approach was the high running time (several hours to days for detecting
a small number of HGT events on small species trees). In the next section, we propose an
approach that integrates topological comparison of trees with the MP criterion to achieve
both accuracy and computational efficiency in the detection of HGT events.

2.4 Integrating MP and Topological Comparison

As described above, the extended version of RIATA-HGT performs very well, in terms
of speed, but overestimates the number of HGT events (due to inaccuracies in the trees).

120 C. Than, G. Jin, and L. Nakhleh

RIATA-HGT

Gene trees
Species tree

Networks

NEPAL

Sequences
Networks

Network, MP

Networks

Significance of HGTs

RIATA-HGT

Species tree

networks
NEPAL

Sequences

Network, MP

Gene trees

Significance of HGTs

Selected

(a) (b) (c)

Fig. 4. Diagrams of the three approaches: RIATA-HGT (a), NEPAL (b), and the integrative ap-
proach (c). RIATA-HGT takes as input a pair of trees (species and gene trees), and computes
a set of minimal phylogenetic networks that contain both trees. NEPAL takes as input a set of
sequences and a set of networks (initially, the set of networks includes only the species tree),
and solves the θ-FTMPPN problem by finding a set of HGT edges whose addition to the species
tree results in an optimal phylogenetic network under the maximum parsimony criterion. In our
analysis in this paper, the value of θ was determined based on observing the parsimony improve-
ment, and is data set-dependent. The integrative approach first runs RIATA-HGT on the pair of
species/gene trees, and then uses the phylogenetic networks inferred to guide the search of the
parsimony search, as implemented in NEPAL.

On the other hand, Jin et al. have shown that the MP approach performs very well in
terms of accuracy, yet is very slow (13). The computational requirement of the MP
criterion stems from the large space of networks that the method has to consider. To
achieve good accuracy with high efficiency, we propose to integrate the two approaches.

Figure 4 shows the diagrams of the two separate approaches as well as the pro-
posed integrative approach. In contrast to the MP approach, where a large number
of networks is explored due to the exponential number of combinations of candidate
HGT edges, our integrative approach focuses on the phylogenetic networks inferred by
RIATA-HGT. The rationale behind this approach is that the overestimation of RIATA-
HGT, and topology-based HGT detection methods in general, is mainly in the form of
false positives, whereas the false negatives are negligible. In other words, RIATA-HGT
in most cases infers all the “true” HGT edges, but also infers additional “false” HGT
edges due to errors in the gene trees. Given the accuracy of the MP criterion, we post-
process the results of RIATA-HGT by evaluating them based on the MP criterion, with
the hope that it would remove the false positive HGT edges. We have developed effi-
cient algorithms for evaluating the parsimony length of phylogenetic networks (14), so
both steps of our integrative approach can be carried out efficiently. The algorithm of
the integrative approach is outlined in Figure 5.

The time complexity of our integrative algorithm is O(km2k) using exact network
parsimony length computing algorithms and O(mk2) using the approximation algo-
rithm described in (14).

2.5 Validating the Integrative Approach

To validate the integrative approach, we consider the differences in the HGT edges and
parsimony scores computed by each of the two methods. More formally, if Nint and
Nmp are two phylogenetic networks computed by the integrative and MP approaches,
respectively, on the same species trees ST and set of sequences S, and H(Nint) and

Integrating Sequence and Topology 121

TopSeqHGTIdent(ST,GT, S)
INPUT: species tree ST , gene tree GT , and sequence dataset S
OUTPUT: network N with marked significance of each HGT

1 Let {N1, . . . , Nm} be the set of all phylogenetic networks computed by RIATA-HGT,
and let H(Ni) be the set of HGT edges in Ni.

2 LetH = ∩m
i=1H(Ni), and R(Ni) = H(Ni)−H. In other words, H denotes the set of

HGT edges that are shared by all networks, and R(Ni), for 1 ≤ i ≤ m,
the set of HGT edges that are in Ni but not shared by all other networks.

3 Apply NEPAL to N ′ = ST +H.
4 For each network Ni, 1 ≤ i ≤ m, apply NEPAL by incrementally adding

(in no particular order) the HGT edges in R(Ni) to N ′, and compute the minimum
parsimony length of the phylogenetic network.

5 Let N = ST , Nopt be the best network according to maximum parsimony
criterion, that is NCost(Nopt, S) = minm

i=1(NCost(Ni, S)).
Apply NEPAL by adding to ST each time one of the HGT events h ∈ H(Nopt) that
results in the most significant drop in the parsimony score and let N = N ∪ h. Stop
this process when the drop is smaller than a specified threshold.

Fig. 5. An outline of the integrative approach. Steps 1 through 4 seek the most parsimonious
network among the several networks computed by RIATA-HGT. Step 5 conducts one last pass
of parsimony length calculation to identify the HGT edges in the optimal network whose con-
tribution to lowering the parsimony length is significant. This last step is necessary since, even
though the most parsimonious network is optimal among all networks computed by RIATA-HGT,
it may still have “ parsimoniously unnecessary” HGT edges whose addition by RIATA-HGT was
necessitated by the incongruence between the two trees.

H(Nmp) are the sets of HGT edges in Nint and Nmp respectively, then we have two
measures of quality:

– mHGT(Nint, Nmp) = (H(Nint)−H(Nmp))∪(H(Nmp)−H(Nint)). This measure
reflects the difference in the locations of the HGT edges between the two networks.

– mpars(Nint, Nmp) = |NCost(Nint, S) − NCost(Nmp, S)|. This measure quanti-
fies the difference in the MP scores of the two networks.

2.6 Data

We studied 20 out of the 31 mitochondrial gene data sets, which were collected from
29 diverse land plants and analyzed in (4). These are cox2, nad2, nad3, nad4(ex4),
nad4(exons), nad5, nad6, nad7, atp1, atp8, ccmB, ccmC, ccmFN1, cox3, nad1, rpl16,
rps19, sdh4, and three introns nad2intron, nad5intron and nad7intron. We used a species
tree for the dataset based on information at NCBI (http://www.ncbi.nih.gov)
and analyzed the entire dataset with both seed and nonseed plants together. For each
gene data set, we restricted the species tree to those species for which the gene se-
quence is available. For the parsimony analysis, we analyzed each gene data set sep-
arately, by solving the θ-FTMPPN problem, as implemented in NEPAL, on the gene
DNA sequence with respect to the species tree. The θ-FTMPPN problem seeks a set of
HGT edges, each of whose addition to the species tree improves the parsimony score

122 C. Than, G. Jin, and L. Nakhleh

beyond the specified threshold θ. In this paper, we determined the value of θ based on
observing the parsimony improvement, as HGT edges were added, and the value of θ
was dependent on the data set; i.e., data sets did not necessarily have the same value of
θ. Our current criterion for determining the value of θ is very simple, yet shows very
good accuracy: we observe the slope of the decrease in the parsimony score as the HGT
edges are added, and stop adding new edges when the slope changes (slows down) sig-
nificantly. In all data sets we have analyzed so far, the change in slope has been very
sharp, which makes it very straightforward to determine the number of HGT edges to
add. For the analysis by RIATA-HGT (which takes as input a pair of trees), for each
gene, we used the species tree as the reference tree and the gene tree reported in (4)
as the second tree. Bergthorsson et al. also calculated and reported the bootstrap sup-
port of the gene tree branches, which we used in calculating the support values of HGT
edges inferred by RIATA-HGT. For the integrative approach, we used the phylogenetic
networks produced by RIATA-HGT and the gene sequences, and applied the algorithm
described above. It is important to note that in their analyses, Bergthorsson et al. fo-
cused only on genes that were horizontally transferred to the mitochondrial genome of
Amborella.

3 Results and Discussion

Table 1 summarizes information about the HGT edges reported by Bergthorsson et al.
for the 20 genes (4), the HGT edges inferred by the MP criterion as implemented in the
NEPAL tool (13; 14), the HGT edges inferred by the RIATA-HGT method for topology-
based HGT detection (22; 27), and the HGT edges inferred by the integrative approach
of topology- and MP-based analysis. Figure 6 shows the HGT edges inferred for two
data sets; we omit the phylogenetic networks for the other data sets.

Bergthorsson et al. reported the groups of species to which the donor(s) of horizon-
tally transferred genes belong, rather than the specific donor. In particular, they focused
on four groups: Bryophytes, Moss, Eudicots, and Angiosperms. For the recipient, the
authors only focused on Amborella. Further, for each HGT event (edge), they computed
and reported its significance based on the SH test (25). Of the 25 HGT events that
Bergthorsson et al. postulated, 13 were supported, 9 unsupported, and 3 (the 3 intron
data sets) had no reported support.

Of the 13 HGTs reported in (4) with high support according to the SH test, the
MP analysis identified 12, missing only the HGT involving gene nad5 from the An-
giosperms. RIATA-HGT also identified 12 out of the 13 HGT edges, missing only the
HGT involving gene nad6. Further, all these 12 HGT edges identified by RIATA-HGT
had support (out of 100) higher than 95, based on Formula (1) above. The integrative
approach identified 11 of the 13 well-supported HGT edges, missing only the HGTs
involving genes nad5 and nad6. In the former case, the HGT was identified by RIATA-
HGT, but deemed insignificant in the parsimony analysis phase, and in the latter case,
RIATA-HGT missed the HGT edge, and since the parsimony analysis in the integra-
tive approach uses those edges that RIATA-HGT identifies, this HGT edge was not
identified.

Integrating Sequence and Topology 123

Ta
bl

e
1.

M
it

oc
ho

nd
ri

al
ge

ne
da

ta
se

ts
an

d
H

G
T

s
po

st
ul

at
ed

in
(4

)
an

d
th

os
e

co
m

pu
te

d
by

th
e

M
P

an
al

ys
is

(N
E

PA
L

),
R

IA
TA

-H
G

T,
an

d
th

e
in

te
gr

at
iv

e
ap

pr
oa

ch
(R

IA
TA

-H
G

T
+

M
P

).
T

he
‘#
H
G
T
s

’
va

lu
e

is
th

e
nu

m
be

r
of

H
G

T
s

fo
un

d;
‘d
o
n
o
r

’d
en

ot
es

th
e

gr
ou

p
fr

om
w

hi
ch

th
e

ge
ne

w
as

tr
an

sf
er

re
d

(i
n

al
l

ca
se

s,
th

e
re

ci
pi

en
t

is
A

m
bo

re
ll

a;
‘S

H
’

de
no

te
s

su
pp

or
t

of
th

e
H

G
T

ev
en

ts
as

co
m

pu
te

d
by

th
e

S
H

te
st

(2
5)

an
d

re
po

rt
ed

in
(4

)
(v

al
ue

s
lo

w
er

th
an

0.
05

in
di

ca
te

hi
gh

su
pp

or
t,

an
d
N
S

in
di

ca
te

s
su

pp
or

ti
s

no
ts

ig
ni

fi
ca

nt
).

T
he

‘F
?

’c
ol

um
n

in
di

ca
te

s
w

hi
ch

of
th

e
H

G
T

s
po

st
ul

at
ed

by
th

e
au

th
or

s
w

er
e

fo
un

d
by

th
e

M
P

an
al

ys
is

,a
nd

th
e

‘#
N
e
t
s

’
sh

ow
s

th
e

nu
m

be
r

of
ne

tw
or

ks
an

al
yz

ed
by

th
e

pa
rs

im
on

y
m

et
ho

d
to

id
en

ti
fy

th
e

co
rr

ec
tH

G
T

s.
Fo

r
th

e
R

IA
TA

-H
G

T
co

lu
m

n,
ea

ch
ro

w
sh

ow
s

th
e

m
in

im
um

nu
m

be
r

of
H

G
T

s
co

m
pu

te
d,

th
e

nu
m

be
r

of
m

in
im

al
so

lu
ti

on
s,

an
d

th
e

nu
m

be
r

of
di

st
in

ct
H

G
T

s
in

al
l

m
in

im
al

so
lu

ti
on

s,
re

sp
ec

tiv
el

y.
B

=
B

ry
op

hy
te

,M
=

M
os

s,
E

=
E

ud
ic

ot
,a

nd
A

=
A

ng
io

sp
er

m
.

B
e
r
g
t
h
o
r
s
s
o
n

e
t
a
l
.

M
P

R
I
A
T
A
-
H
G
T

R
I
A
T
A
-
H
G
T
+
M
P

G
e
n
e

#
H
G
T
s
d
o
n
o
r

S
H
#
H
G
T
s
F
?
#
N
e
t
s
#
H
G
T
s
#
N
e
t
s
#
e
v
e
n
t
s
#
H
G
T
s
F
?
#
N
e
t
s

c
o
x
2

3
M

<
0
.
0
0
1

1
Y

8
4
8
2

9
4

1
2

1
Y

2
3

E
N
S

N
8
4
8
2

9
4

1
2

N
2
3

E
N
S

N
8
4
8
2

9
4

1
2

N
2
3

n
a
d
2

2
M

<
0
.
0
0
1

1
Y

3
5
0
0

7
6

1
1

1
Y

2
1

E
N
S

N
3
5
0
0

7
6

1
1

N
2
1

n
a
d
4
(
e
x
o
n
s
)

1
M

<
0
.
0
0
1

1
Y

1
6
2
0

4
2

5
1

Y
9

n
a
d
4
(
e
x
4
)

1
E

N
S

2
Y

1
8
3
2

6
3

8
2

Y
2
1

n
a
d
5

2
M

<
0
.
0
0
1

1
Y

3
2
9
2

6
6

9
1

Y
1
7

A
0
.
0
2
5

N
3
2
9
2

6
6

9
N

1
7

n
a
d
6

1
B

<
0
.
0
0
1

1
Y

2
4
8
4

6
3

8
1

N
1
5

n
a
d
7

2
M

<
0
.
0
0
1

1
Y

2
9
4
8

7
1

7
1

Y
1
3

E
N
S

N
2
9
4
8

7
1

7
N

1
3

a
t
p
1

1
E

0
.
0
0
1

1
Y

2
8
1
7

6
1
8

1
4

1
Y

2
7

a
t
p
8

1
E

0
.
0
0
8

2
Y

9
0
5
9

5
6

1
1

1
Y

2
1

c
c
m
B

1
E

N
S

2
Y
6
6
0
1
5

6
3

1
4

2
Y

1
0
1

c
c
m
C

1
E

0
.
0
3

1
Y

2
7
8
6

7
2
1

1
5

1
Y

2
9

c
c
m
F
N
1

1
E

0
.
0
0
4

2
Y

4
4
1
2

7
1
8

1
3

2
Y

4
6

c
o
x
3

1
A

N
S

1
N

3
4
6
6

8
1
5

1
8

1
N

5
2

n
a
d
1

1
E

<
0
.
0
0
1

1
Y

2
8
1
2

9
1
2

1
4

1
Y

2
7

r
p
l
1
6

1
E

N
S

3
Y
2
1
6
3
2

1
0

2
7

2
3

1
Y

6
7

r
p
s
1
9

1
E

0
.
0
0
3

1
Y

1
4
7
6

5
4

7
1

Y
1
3

s
d
h
4

1
E

N
S

3
Y
1
8
6
7
0

9
1
8

1
8

3
Y

5
4
0

n
a
d
2
i
n
t
r
o
n

1
M

−
2

Y
5
9
0
4

8
2

1
0

2
Y

4
4

n
a
d
5
i
n
t
r
o
n

1
M

−
2

Y
1
0
2
8
0

9
5

1
8

2
Y

5
1

n
a
d
7
i
n
t
r
o
n

1
M

−
1

Y
3
2
8
4

1
2

4
8

2
6

1
Y

5
1

124 C. Than, G. Jin, and L. Nakhleh

Arabidopsis
Brassica

Oenothera
Beta

Pisum

Daucus
Petunia

Agave

Zea

Philodendron
Oryza

Amborella_H_E2

Eichhornia

Liriodendron

Asarum

Zamia

Laurus
Piper

Brachythecium
Thuidium

Hypnum
Pinus

Marchantia

Porella
Pallavicinia

Trichocolea

H1

Amborella_V

Amborella_H_E1
Amborella_H_M

Arabidopsis
Brassica

Oenothera
Beta

Vicia

Helianthus
Lonicera
Eschscholzia

Agave

Zea
Oryza

Platanus

Amborella_V
Nuphar

Ginkgo
Cycas

Hookeria
Orthodontium

Psilotum
Pinus

Rhacocarpus
Ulota

Sphagnum
Andreaea

Marchantia

Physcomitrella

BrachytheciumH1

Amborella_H_A
Amborella_H_M

The cox2 gene data set The nad5 gene data set

Fig. 6. HGT edges identified computationally. In the cox2 data set, the MP analysis identified
four equally “good” HGT edges, all of which represent HGT to Amborella H M, and each of
which denotes a different donor (the four branches inside the circle): Hypnum, Brachythecium,
Thuidium, and the clade containing all three. Under the MP criterion, those four donors contribute
equally to the improvement in the parsimony length. RIATA-HGT identified the HGT edge with
the clade of all three species as the donor, and Amborella H M as the recipient, along with many
other “false positive” HGT edges, which are not shown here. The integrative approach finds the
single HGT edge from the clade of all three species to Amborella H M. In the case of the nad5
data set, the MP analysis identified the only shown HGT edge, which was identified as well by
RIATA-HGT along with other HGT edges (not shown). The integrative approach identified only
the shown HGT edge.

The only HGT that the MP analysis missed in the nad5 data set involves an HGT
from the Angiosperms. This transfer had support of 0.025 based on the SH test as
reported by Bergthorsson et al.. Further, this edge was identified by RIATA-HGT with
support of 94. In the MP analysis, the only significant Amborella transfer comes from
the Moss group. The grouping of Eudicots and Monocots results in much less significant
improvement in the parsimony length. The transfer from the Angiosperms to Amborella
has even less impact on the parsimony length.

The three HGT edges postulated by Bergthorsson et al. for the intron data sets, and
which had no support values based on the SH test reported, were identified by the MP
analysis of NEPAL, RIATA-HGT, and the integrative approach. Further, those three
edges had support around 50, based on Formula (1) above.

Of the other 9 HGT events reported by the authors with no significant support based
on the SH test, the MP analysis, RIATA-HGT and the integrative approach did not
identify five of them. However, all three approaches identified four HGT edges that
had no significant support based on the SH test. All these four HGTs were from the
Eudictots to Amborella, and they were in the nad4(ex4), ccmB, rpl16, and sdh4 data
sets. In all four cases, the support ranged from low (≈ 50) to high (≈ 95), based on
Formula (1) above.

Integrating Sequence and Topology 125

In eight data sets, the MP analysis identified HGT edges in addition to those reported
in (4). However, none of these edges involved Amborella. One possible explanation for
why these edges were not reported in (4) is probably because the authors focused only
on HGT events involving Amborella. Another explanation may be the inaccuracy of the
parsimony criterion for evaluating HGT edges in these cases. RIATA-HGT identified
the same HGT edges in these eight cases, support ranging from low (≈ 50) to high (≈
90), based on Formula (1) above. The integrative approach in these cases also identified
the same HGT edges.

It is important to note that all other HGT edges identified by RIATA-HGT had sup-
port ranging from very low to very high (≈ 100 in some cases), based on Formula (1)
above, but were rendered insignificant based on the parsimony phase in the integrative
approach as well. Further, we analyzed the parsimony scores of the networks computed
by NEPAL and by the integrative approach. In both cases, the scores were very similar.

Finally, the parsimony approach analyzed several thousand networks (using the best
available heuristic (11)) to identify the HGTs, and that took several hours on each gene,
and up to two days on some. Table 1 shows the exact number of networks that our
parsimony analysis checks even with the branch-and-bound heuristics. The integrative
approach, on the other hand, took a few minutes on each of the data sets.

4 Conclusions and Future Work

In this paper, we presented a measure to assess the support of HGT edges inferred by
phylogeny-based methods that compare species and gene tree topologies. Further, we
presented a method for speeding up approaches the infer HGT events by augmenting
species trees into phylogenetic networks to improves the fitness of evolution of gene
sequence data. We obtained promising results on 20 mitochondrial gene data sets, pre-
viously analyzed in (4).

While we used the maximum parsimony criterion in the second phase of our inte-
grative approach, it is also possible to use stochastic models of HGT (e.g., (26; 12; 5))
to probabilistically screen the phylogenetic networks produced in the first phase. This
is one of the future directions we intend to pursue. The immediate task for us in our
future work is to study the performance of these measures in extensive simulations. The
advantage that simulations provide over real data is that the true HGT events are known,
which allows us to make absolute quantification of the performance of the methods.

Acknowledgments

This work is supported in part by the Department of Energy grant DE-FG02-06ER25734,
the National Science Foundation grant CCF-0622037, and the George R. Brown School
of Engineering Roy E. Campbell Faculty Development Award. Further, the work was
supported in part by the Rice Computational Research Cluster funded by NSF under
Grant CNS-0421109, and a partnership between Rice University, AMD and Cray.

The authors would like to thank Aaron O. Richardson for providing the Amborella
gene data sets, and the anonymous reviewers for comments on the technical details as
well as the readability of the manuscript.

126 C. Than, G. Jin, and L. Nakhleh

References

[1] Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. An-
nals of Combinatorics 8(4), 391–408 (2004)

[2] Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events.
BMC Evolutionary Biology 6 (2006)

[3] Bergthorsson, U., Adams, K.L., Thomason, B., Palmer, J.D.: Widespread horizontal transfer
of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

[4] Bergthorsson, U., Richardson, A., Young, G.J., Goertzen, L., Palmer, J.D.: Massive hori-
zontal transfer of mitochondrial genes from diverse land plant donors to basal angiosperm
Amborella. Proc. Nat’l Acad. Sci., USA 101, 17747–17752 (2004)

[5] Galtier, N.: A model of horizontal gene transfer and the bacterial phylogeny problem. Sys-
tematic Biology 56(4), 633–642 (2007)

[6] Gogarten, J.P., Doolittle, W.F., Lawrence, J.G.: Prokaryotic evolution in light of gene trans-
fer. Mol. Biol. Evol. 19(12), 2226–2238 (2002)

[7] Gorecki, P.: Reconciliation problems for duplication, loss and horizontal gene transfer. In:
Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2004), pp. 316–325 (2004)

[8] Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc.
5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2001), pp. 149–156. ACM Press, New
York (2001)

[9] Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies.
Molecular Biology and Evolution 23(2), 254–267 (2006)

[10] Huson, D.H., Kloepper, T., Lockhart, P.J., Steel, M.A.: Reconstruction of reticulate net-
works from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A.,
Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 233–249. Springer,
Heidelberg (2005)

[11] Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic
network reconstruction. Bioinformatics 23, e123–e128 (2006); Proceedings of the European
Conference on Computational Biology (ECCB 2006)

[12] Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks.
Bioinformatics 22(21), 2604–2611 (2006)

[13] Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum
parsimony criterion: a case study. Molecular Biology and Evolution 24(1), 324–337 (2007)

[14] Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing
the the parsimony score of phylogenetic networks: theoretical bounds and empirical perfor-
mance. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp.
61–72. Springer, Heidelberg (2007)

[15] Kunin, V., Goldovsky, L., Darzentas, N., Ouzounis, C.A.: The net of life: reconstructing the
microbial phylogenetic network. Genome Research 15, 954–959 (2005)

[16] Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in prokary-
otes: The case of the γ-proteobacteria. PLoS Biology 1(1), 1–9 (2003)

[17] MacLeod, D., Charlebois, R.L., Doolittle, F., Bapteste, E.: Deduction of probable events of
lateral gene transfer through comparison of phylogenetic trees by recursive consolidation
and rearrangement. BMC Evolutionary Biology 5 (2005)

[18] Makarenkov, V.: T-REX: Reconstructing and visualizing phylogenetic trees and reticulation
networks. econstructing and visualizing phylogenetic trees and reticulation networks 17(7),
664–668 (2001)

[19] Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J.,
Timme, R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

Integrating Sequence and Topology 127

[20] Nakamura, Y., Itoh, T., Matsuda, H., Gojobori, T.: Biased biological functions of horizon-
tally transferred genes in prokaryotic genomes. Nature Genetics 36(7), 760–766 (2004)

[21] Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks
using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems
Bioinformatics Conference (CSB 2005), pp. 93–102 (2005)

[22] Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: A fast and accurate heuristic for recon-
strucing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp.
84–93. Springer, Heidelberg (2005)

[23] Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species–
theory and practice. In: Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2004),
pp. 337–346 (2004)

[24] Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bac-
terial innovation. Nature 405(6784), 299–304 (2000)

[25] Shimodaira, H., Hasegawa, M.: Multiple comparisons of log-likelihoods with applications
to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116 (1999)

[26] Suchard, M.A.: Stochastic models for horizontal gene transfer: taking a random walk
through tree space. Genetics 170, 419–431 (2005)

[27] Than, C., Nakhleh, L.: SPR-based tree reconciliation: Non-binary trees and multiple solu-
tions. In: Proceedings of the Sixth Asia Pacific Bioinformatics Conference, pp. 251–260
(2008)

[28] Than, C., Ruths, D., Innan, H., Nakhleh, L.: Identifiability issues in phylogeny-based de-
tection of horizontal gene transfer. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG
2006. LNCS (LNBI), vol. 4205, pp. 215–219. Springer, Heidelberg (2006)

[29] Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in HGT detection: Sta-
tistical error, coalescent effects, and multiple solutions. Journal of Computational Biol-
ogy 14(4), 517–535 (2007)

An Evolutionary Study of the Human

Papillomavirus Genomes

Dunarel Badescu1,�, Abdoulaye Baniré Diallo1,2,�, Mathieu Blanchette2,
and Vladimir Makarenkov1

1 Département d’informatique, Université du Québec à Montréal, C.P. 8888,
Succursale Centre-Ville, Montréal (Québec), H3C 3P8, Canada

2 McGill Centre for Bioinformatics and School of Computer Science, McGill
University, 3775 University Street, Montréal, Québec, H3A 2B4, Canada

Abstract. In this article, we undertake a study of the evolution of Hu-
man Papillomaviruses (HPV), whose potential to cause cervical cancer
is well known. First, we found that the existing HPV groups are mono-
phyletic and that the high-risk carcinogenicity taxa are usually clustered
together. Then, we present a new algorithm for analyzing the informa-
tion content of multiple sequence alignments in relation to epidemiologic
carcinogenicity data to identify regions that would warrant additional
experimental analyses. The new algorithm is based on a sliding window
procedure looking for genomic regions being responsible for disease. Ex-
amination of the genomes of 83 HPVs allowed us to identify specific
regions that might be influenced by insertions, deletions, or simply by
mutations, and that may be of interest for further analyses.

1 Introduction

Human papillomaviruses (HPV) have a causal role in cervical cancer with al-
most half a million new cases identified each year [1,3,18]. The HPV genomic
diversity is well known [2]. About a hundred of HPV types are identified, and
the whole genomes of more than eighty of them are sequenced (see the latest
Universal Virus Database report by International Committee on Taxonomy of
Viruses (ICTV)). A typical HPV genome is a double-stranded, circular DNA
genome of size close to 8 Kbp, with complex evolutionary relationships and a
small set of genes. In general, the E5, E6, and E7 genes modulate the transfor-
mation process, the two regulatory proteins, E1 and E2, modulate transcription
and replication, and the two structural proteins L1 and L2 compose the viral
capsid. Protein E4 has an unclear function in the HPV life cycle, however, sev-
eral studies indicate that it could facilitate the viral genome replication and the
activation of viral late functions [32], and it could also be responsible for virus
assembly [22]. A HPV is considered to belong to a new HPV type if its complete
genome has been cloned and the DNA sequence of the gene L1 differs by more

� The two first authors contributed equally to the work and should be considered as
joint first authors.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 128–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Evolutionary Study of the Human Papillomavirus Genomes 129

than 10% from the closest known HPV type. The comparison of HPV genomes,
conducted by ICTV, is based on nucleotide substitutions only [19,8]. Older HPV
classifications were built according to their higher or lower risk of cutaneous or
mucosal diseases. Most of the HPV studies were based on single gene (usually
E6 or E7) analyses. The latter genes are predominantly linked to cancer due
to the binding of their products to the p53 tumor suppressor protein and the
retinoblastoma gene product pRb [29]. To define carcinogenic types, we used
epidemiologic data recruited in 25 countries from a large international survey on
HPVs in cervical cancer and from a multicenter case-control study conducted on
3,607 women with incident, histologically confirmed cervical cancer recruited in
25 countries [19,20]. HPV DNA detection and typing in cervical cells or biopsies
were centrally done using PCR assays which attest for the quality of the study
[19]. More than 89% of them had squamous cell carcinoma (i.e. Squam cancer)
and about 5% had adenosquamous carcinoma (i.e. Adeno cancer) see Table 1
adapted from [19]. More than half of the infection cases are due to the types 16
and 18 of HPV, which are referred to as high-risk HPVs [5].

Table 1. Distribution of carcinogenic HPVs for the Squam and Adeno types of cancer.
Complete genomic sequence data are not available yet for HPVs-35, HR, 68, and X.

Squamous cell carcinoma Adenocarcinoma
and adenosquamous
carcinoma

HPV types Number % positive Number % positive

HPV-16 1,452 54.38 77 41.62
HPV-18 301 11.27 69 37.30
HPV-45 139 5.21 11 5.95
HPV-31 102 3.82 2 1.08
HPV-52 60 2.25
HPV-33 55 2.06 1 0.54
HPV-58 46 1.72 1 0.54
HPV-56 29 1.09
HPV-59 28 1.05 4 2.16
HPV-39 22 0.82 1 0.54
HPV-51 20 0.75 1 0.54
HPV-73 13 0.49
HPV-82 7 0.26
HPV-26 6 0.22
HPV-66 5 0.19
HPV-6 2 0.07
HPV-11 2 0.07
HPV-53 1 0.04
HPV-81 1 0.04
HPV-55 1 0.04
HPV-83 1 0.04

Total 2,293 85.89 168 90.37

130 D. Badescu et al.

In this paper, we first studied a whole genome phylogenetic classification of the
HPV and the insertion and deletion (indel) distribution among HPV lineages lead-
ing to the different types of cancer. First, we inferred a phylogenetic tree of 83
HPVs based on whole HPV genomes. We found that the evolution of the L1 gene,
used by ICTV to establish the HPV classification, generally reflects the whole
genome evolution. Second, we compared the differences between gene trees built
for the 8 most important HPV genes (E1, E2, E4, E5, E6, E7, L1 and L2) using the
normalized Robinson and Foulds topological distance [23]. Then, we described a
new algorithm for analyzing the information content of multiple sequence align-
ments in order to identify regions that may be responsible for the carcinogenicity.
This algorithm is based on a new formula taking into account the sequence similar-
ity among carcinogenic taxa and the sequence dissimilarity between the carcino-
genic and non-carcinogenic taxa computed for a genomic region bounded by the
position of the sliding window. Using the new technique, we examined all available
genes in 83 HPV genomes and identified the specific genomic regions that would
warrant interest for future biological studies.

2 Indel Analysis of HPV Genomes and Reconciliation of
HPV Gene Trees

The 83 completely sequenced HPV genomes (all identified by ICTV) were down-
loaded and aligned using ClustalW [28], producing an alignment with 10426
columns. The phylogenetic tree of 83 HPVs (Figure 2) was inferred using the
PHYML program [12] with the HKY substitution model. Bootstrap scores were
computed to assess the robustness of the branches using 100 replicates. Most
branches obtain support above 80%, but for a better readability, they are not
represented in Figure 2. However, they are given in the supplemental materials1.
As suggested in [29], the bovine PV of type 1 was used as outgroup to root this
phylogeny. To the best of our knowledge, the constructed phylogenetic tree is
the first whole genome phylogenetic tree of HPVs.

Our analysis revealed the presence of 12 known monophyletic HPV groups
that are denoted by numerated nodes, labeled according to the ICTV annota-
tion, in Figure 2. The other monophyletic groups obtained were not depicted by
numbers. The obtained whole-genome phylogeny obtained usually corresponds
to the HPV classification provided by ICTV on the basis of the L1 gene. Most
of the dangerous HPVs (see Table 1) can be found in the sister subtrees rooted
by the nodes 16 and 18.

As carcinogenicity may be introduced into a HPV by an insertion or deletion
(indel) of a group of nucleotides, we first addressed the problem of indel distri-
bution in the evolution of HPV. Thus, the most likely indel scenario was inferred
using a heuristic method described in [9,10]. Such a scenario includes the distribu-
tion of the predicted indel and base conservation events for all HPV genes. Table 2

1 Supplemental materials are available at:
http://www.labunix.uqam.ca/∼makarenv/RecombCG2008.zip

An Evolutionary Study of the Human Papillomavirus Genomes 131

Fig. 1. Phylogenetic tree of 83 HPVs obtained with PHYML. The 21 carcinogenic HPV
are shown in bold. The white nodes identify the existing HPV groups according to the
ICTV and NCBI taxonomic classifications; the shaded nodes (A and B) distinguish
between the non-carcinogenic and carcinogenic families. Bootstrap scores are above
80% for most of the branches; for a better readability, they are not represented. The
HPVs 1 and 34 are present in two copies, (1 and 1a) and (34A and 34B), respectively.

reports, for each of the 8 main genes of HPV, the total number of conservations,
insertions and deletions of nucleotides that occurred during their evolution. Genes
E1, L1 and L2 show more than 90% conservation at the nucleotide level, E2, E4
and E6 between 80 and 90%, and E5 and E7 respectively 73% and 59%.

The highest indel frequencies are in the subtrees rooted by the node 61 where
there are only low risks of carcinogenicity (Figure 2). The groups included in
the subtree A have low percentage of indels on in each branch. It is likely that
the organisms of this subtree inherited their carcinogenicity from their closest
common ancestor.

132 D. Badescu et al.

Table 2. For each of the 8 main HPV genes, this table reports the numbers (and
average numbers) of Conservations (including substitutions), Insertion and Deletions
of nucleotides that occurred during evolution

Variable/Gene Conservation Insertion Deletion Avg. Cons. Avg. Ins. Avg. Del.

E1 12111 601 2774 0.918 0.003 0.010
E2 13304 306 3460 0.852 0.001 0.022
E4 6318 195 2117 0.851 0.001 0.038
E5 1688 356 503 0.731 0.021 0.031
E6 7323 613 1529 0.890 0.002 0.011
E7 3457 0 1393 0.594 0.000 0.039
L1 9664 314 2751 0.927 0.001 0.010
L2 21716 494 5138 0.923 0.004 0.026

Fig. 2. Average normalized Robinson and Foulds topological distance for each of the
8 main HPV genes. Each column of the diagram represents a gene and consists of
the stacked rectangles whose heights are proportional to the values of the normalized
Robinson and Foulds topological distances between the phylogeny of this gene and those
represented by the stacked rectangles. The column heights depicts the total average
distance. For the sake of presentation the percentage values on the ordinate axis were
divided by 7 (which is the number of pairwise comparisons made for each gene tree).

We also carried out an analysis intended to compare the topologies of the
gene phylogenies built for the 8 main HPV genes. Thus, we first aligned, using
ClustalW [28], the HPV gene sequences, separately for each gene, and inferred 8
gene phylogenies using the PHYML program [12] with the HKY model. In order
to measure their degree of difference, we computed the Robinson and Foulds
(RF) topological distances between each pair of gene trees [23]. As the number
of tree leaves varied from 70 to 83 (due to the non-availability of some gene
sequences for a few HPVs), we reduced the size of some trees prior to this pairwise

An Evolutionary Study of the Human Papillomavirus Genomes 133

topological comparison and normalized all distances by the largest possible value
of the RF distance, which is 2n − 6 for two binary trees with n leaves. Figure 2
shows the results obtained, with RF distances are depicted as stacked rectangles.
The results suggest that the trees representing the evolution of the E4 and E5
genes differ the most, on average, from the other gene phylogenies, whereas the
phylogeny of E2 reconciles the most the topological differences of this group of
gene trees. Two HPV gene phylogenies differ from each other by about 32%, on
average. In the future, it might also be interesting to compare the gene trees we
obtained using Maximum Likelihood tests such as Shimodaira-Hasegawa [24] or
Kishino-Hasegawa [17] and to assess the confidence of phylogenetic tree selection
using a program such as CONSEL [25].

These results confirm the hypothesis made in a number of HPV studies (see for
instance [21,30]), that most HPV genes undergo frequent recombination events.
Uncritical phylogenetic analyses performed on recombinant sequences could lead
to the impression of novel, relatively isolated branches. Recently, Angulo and
Carvajal-Rodriguez (2007) have provided new support to the recent evidence of
recombination in HPV. They found that the gene with recombination in most of
the groups is L2 but the highest recombination rates were detected in L1 and E6.
Gene E7 was recombinant only within the HPV16 type. The authors concluded
that this topic deserves further study because recombination is an important evo-
lutionary mechanism that could have a high impact both in pharmacogenomics
and for vaccine development.

3 Algorithm for the Identification of Putatively
Carcinogenic Regions

This section describes a new algorithm intended for finding genomic regions
that may be responsible for HPV carcinogenicity. The algorithm is based on the
hypothesis that sequence regions responsible for cancer are very similar among
the carcinogenic HPVs while they differ a lot from the homolog regions in the
non-carcinogenic HPVs. The following procedure was adopted. First, 83 available
HPV genomes were downloaded and inserted into a relational database along
with the clinical information regarding identified HPV types and histological
type of cancer occurrences [19,20]. We constructed three HPV Types Datasets:
”High-Risk”, containing HPVs16 and 18, ”Squamous”, containing HPV types
responsible for Squamous Cell Carcinoma (HPV-6, 11, 16, 18, 26, 31, 33, 39, 45,
51, 52, 53, 55, 56, 58, 59, 66, 73, 81, 82, 83) and Adeno with types responsible
for Adenocarcinoma (HPV-16, 18, 31, 33, 35, 39, 45, 51, 58, 59). See Table 1
for more detail. HPV types with incomplete genome information or without
annotations were excluded from the dataset. As previously, we used the gene
sequences aligned separately for each gene.

Then, we scanned all gene sequence alignments using a sliding window of
a fixed width (in our experiments the window width ranged from 3 to 20 nu-
cleotides, see Figure 3). First, a detailed scan of each gene with increments of 1
nucleotide was performed to identifying the regions with a potential for causing

134 D. Badescu et al.

Fig. 3. A sliding window of a fixed width was used to scan all sequences of each HPV
gene separately. The sequences in black belong to the set X (carcinogenic HPVs; in this
example HPVs 16 and 18), all other sequences belong to the set Y (non-carcinogenic
HPVs). The organism is indicated in the column on the extreme left.

carcinogenicity (the main results are reported in Table 3), and called here hit
regions. Second, a non-overlapping windows of width 20 nucleotides was carried
out for plotting Figures 4, 5, and 62. Three separate analyses were made for the
three above-described carcinogenic families: High-Risk, Squamous and Adeno
HPVs.

Once the window position is fixed and the taxa are assigned to the sets X
(carcinogenic HPVs) and Y (non-carcinogenic HPVs), the hit region identifica-
tion function, denoted here as Q, can be computed. This function is defined as
a difference between the means of the squared distances computed among the
sequence fragments (bounded by the sliding window position) of the taxa from
the set X and those computed only between the sequence fragments from the
distinct sets X and Y . The mean of the squared distances computed among the
sequence fragments of the carcinogenic taxa from the set X , and denoted here
as V (X), is computed as follows:

V (X) =
1

(N(X)(N(X) − 1)/2)

∑
{x1,x2∈X|x1 	=x2}

dist2h(x1, x2), (1)

and the mean of the squared distances computed only between the sequence
fragments from the distinct sets X and Y , and denoted here as D(X, Y), is
computed as follows:

D(X, Y) =
1

N(X)N(Y)

∑
{x∈X,y∈Y }

dist2h(x, y), (2)

2 Figures 5 and 6 are in Appendix available at:
http://www.labunix.uqam.ca/∼makarenv/Appendix RECOMB 2008 Paris.pdf

An Evolutionary Study of the Human Papillomavirus Genomes 135

Table 3. Selected high-scoring regions with respect to the values of the hit region
identification function Q. The best results for the contiguous regions of size 13 to 20
are reported. The best entry by HPV type (High-Risk, Squam, Adeno) and by gene is
presented. The largest values of Q are in bold.

Dataset Gene Q Index Window width D(X, Y) V (X).

High-Risk E1 0.417 695 16 0.74 0.22
Squam E1 0.345 575 14 0.50 0.08
Adeno E1 0.353 307 20 0.52 0.09
High-Risk E2 0.553 1289 13 0.76 0.02
Squam E2 0.385 613 16 0.47 0.00
Adeno E2 0.415 1265 20 0.66 0.14
High-Risk E4 0.480 606 17 0.62 0.00
Squam E4 0.373 1035 15 0.46 0.01
Adeno E4 0.395 549 15 0.49 0.00
High-Risk E5 0.339 88 13 0.41 0.01
Squam E5 0.401 72 16 0.50 0.00
Adeno E5 0.363 72 16 0.44 0.00
High-Risk E6 0.496 725 17 0.69 0.05
Squam E6 0.531 725 17 0.76 0.06
Adeno E6 0.521 725 17 0.75 0.06
High-Risk E7 0.258 206 13 0.34 0.05
Squam E7 0.263 445 16 0.38 0.08
Adeno E7 0.262 110 16 0.40 0.10
High-Risk L1 0.574 241 14 0.79 0.02
Squam L1 0.294 1159 15 0.34 0.00
Adeno L1 0.302 1181 17 0.56 0.20
High-Risk L2 0.310 1751 14 0.65 0.28
Squam L2 0.320 1916 15 0.38 0.00
Adeno L2 0.313 1914 17 0.37 0.00

where N(X) and N(Y) are the cardinalities of the sets X and Y , respectively,
and disth(x1, x2) is the Hamming distance between the sequence fragments cor-
responding to the taxa x1 to x2.

Then, the hit region identification function Q is defined as follows:

Q = ln(1 + D(X, Y) − V (X)). (3)

The larger the value of this function for a certain genomic region, the more dis-
tinct are the carcinogenic taxa from the non-carcinogenic ones. The use of the
Hamming distance instead of the well-adapted sequence to distance transforma-
tions such as the Jukes-Cantor (1969), Kimura 2-parameter (1980) or Tamura-
Nei (1993) corrections, is justified by the two following facts: first, often the
latter transformation formulae are not applicable to short sequences (remember
that in our experiments the sequence lengths, equal to the sliding window width,
varied from 3 to 20 nucleotides), and second, most of the well-known transfor-
mation models either ignore gaps or assign a certain penalty to them. As the
carcinogenicity of HPVs can be related to an insertion or deletion of a group

136 D. Badescu et al.

Algorithm 1. Algorithmic scheme(MSA, MSA L,X, N(X), Y, N(Y), WIN MIN,
WIN MAX, S, TH)

Require: MSA: Multiple sequence alignment (considered as a matrix),
MSA L : Length of MSA,
X: Set of carcinogenic taxa,
N(X): Cardinality of the set X,
Y: Set of non-carcinogenic taxa,
N(Y): Cardinality of the set Y,
WIN MIN: Minimum sliding window width,
WIN MAX: Maximum sliding window width,
S: Sliding window step,
TH: Minimum Q value for Hit (i.e., hit threshold).

Ensure: Set of Hit Regions: (win width, idx, Q), where
win width : Current sliding window width,
idx : Hit Index (i.e., its genomic position),
Q : Value of the hit region identification function.

1: for win width from WIN MIN to WIN MAX do
2: for idx from 0 to MSA L−win width with step S do
3: MSA X ← MSA[X][idx..idx + win width]
4: MSA Y ← MSA[Y][idx..idx + win width]
5: V (X)← D(X, Y)← 0
6: for all distinct i, j ∈ X do
7: V (X)← V (X) + dist2h(MSA X[i], MSA X[j])
8: end for
9: V (X)← 2× V (X)/(N(X) × (N(X)− 1))

10: for each i ∈ X and j ∈ Y do
11: D(X, Y)← D(X, Y) + dist2h(MSA X[i], MSA Y[j])
12: end for
13: D(X, Y)← D(X, Y)/(N(X)×N(Y))
14: Q← ln(1 + D(X, Y)− V (X))
15: if Q > TH then
16: identify the current region (win width, idx, Q) as a hit region
17: end if
18: end for
19: end for

of nucleotides, the gaps should not be ignored but rather considered as valid
characters, with the same weight as the other nucleotides, when computing the
pairwise distances between the genomic regions.

The time complexity of this algorithm executed with overlapping sliding win-
dows of a fixed width, and advancing one alignment site by step, is O(l×n2×w),
where l is the length of the multiple sequence alignment, n the number of taxa,
and w the window width. However, this complexity can be reduce to O(n2 × l)
if we avoid recomputing the Hamming distance for neighbouring overlapping
windows. This can be done by only removing the value of the left column of
the sliding window while taking into account the value of added column in the

An Evolutionary Study of the Human Papillomavirus Genomes 137

Fig. 4. The variation of the hit identification function Q for the High-Risk HPVs
(HPVs-16 and 18) obtained with the non-overlapping sliding widows of width 20 during
the scan of the gene L1. The abscissa axis represents the window position.

Hamming distance of the sliding window. For a non-overlapping sliding window,
the time complexity is O(n2 × l). If the width of the sliding window varies, as it
was the case in our experiments, the time complexity should be obviously mul-
tiplied by the difference between the maximum and minimum window widths.
The detailed algorithmic scheme is presented on the previous page.

4 Results, Discussion and Conclusion

The procedure for identifying hit regions in the 83 available HPV genomes
was carried out twice: first, with overlapping windows of width w (w = 3..20),
advancing one alignment site by step, and second, with non-overlapping
windows of width 20. The 8 most important HPV genes (see Table 3) were
scanned in such a way. The scan based on the overlapping windows provided
over 35,000 values of Q bigger than 0.25. From the best 100 results obtained
for each gene, we manually selected (see Table 3) the longest contiguous regions
(up to 20 nucleotides) corresponding to the largest values of the hit region
identification function Q. The values of Q were dependent on the window width,
with better results usually associated with small windows. For instance (see
Table 3), for larger window sizes, the largest values of Q were found during
the scans of genes E2 and E6 for all types of HPVs, with the exception of the
overall best score obtained during the scan of the gene L1 for the High-Risk
HPV types (the value of 0.574 for a 14-nucleotide region starting with the
index 241, see Table 3). For windows of small width, the largest values of Q
were observed during the scan of the gene E4 for the High-Risk HPV category

138 D. Badescu et al.

but in Table 3 we show only the best results for the longer contiguous regions
of size 13 to 20 nucleotides.

Figure 3 depicts the progressive results obtained during the scan of the L1 gene
and the High-Risk HPVs (HPVs-16 and 18) with the non-overlapping windows
of size 20 nucleotides. The highest score, for the non-overlapping windows of
size 20 among all genes and all types of HPV-caused cancer, of the Q function
(Q = 0.55) was obtained for this gene. As most of the largest values of Q were
obtained for the genes E2 and E6, we also present in Appendix the progressive
results diagrams illustrating the scan of these genes with the non-overlapping
windows of size 20 (Figures 5 and 6 in Appendix2).

The results of our method suggest that the largest values of the hit region
identification function Q are usually found during the scan of the genes E2 and
E6. It is worth noting that according to recent findings the high expression of E6
and disruption of E2 might play an important role in the development of HPV-
induced cervical cancer [31]. As result of E6 high expression, the immune system
is potentially evaded [7]. Disruption of the gene E2 was observed in invasive
carcinomas [4] and in high-grade lesions [11]. Surprisingly, the overall largest
value of Q was obtained for a specific region of the L1 gene. This underlines
the possible use of our method for investigating particular regions of capsidal
proteins in relation with vaccine design. It has been shown that linear epitopes
within the protein L1 that induce neutralizing antibodies exist [6].

We noticed that the obtained results usually depend on the window width.
As substitutions affect individual sites whereas indels often involve several con-
secutive nucleotides, small window sizes will tend to favor the former. However,
the use of the Hamming distance, which does not ignore gaps in calculation,
and variable window width allow us to account for both substitution and in-
del events. In the future, it would be interesting to study in more detail, in
collaboration with virologists, all genomic regions providing the highest scores
of the hit region identification function Q (the particular attention here should
be paid to the genes E2, E6 and L1), determine, for each selected region, the
evolutionary events (substitutions or indels) responsible for the observed dif-
ferences in the carcinogenic and non-carcinogenic HPVs, and then establish at
which level (i.e. on which branch) of the associated gene phylogeny this event
has occurred. It may also be interesting to consider merging our results to those
given by methods for detecting sequences under lineage-specific selection such
as DLESS [26]. Next, we plan to compare this work with other approaches of
the computational virology, which used some simpler methods, such as signa-
tures, to analyze other viruses. Another interesting development would be to
design a statistical test allowing one to measure the significance of the obtained
results.

Acknowledgement. Dunarel Badescu is an NSERC fellow. We thank Alix Boc
and Emmanuel Mongin for their useful comments.

An Evolutionary Study of the Human Papillomavirus Genomes 139

References

1. Angulo, M., Carvajal Rodriguez, A.: Evidence of recombination within human
alpha-papillomavirus. Virology Journal 4, 33 (2007)

2. Antonsson, A., Forslund, O., Ekberg, H., Sterner, G., Hansson, B.G.: The Ubiq-
uity and Impressive Genomic Diversity of Human Skin Papillomaviruses Suggest
a Commensalic Nature of These Viruses. Journal of Virology 74(24), 11636–11641
(2000)

3. Bosch, F.X., Manos, M.M., Muoz, N., Sherman, M., Jansen, A.M., Peto, J., Schiff-
man, M.H., Moreno, V., Kurman, R., Shan, K.V.: Prevalence of Human Papil-
lomavirus in Cervical Cancer: a Worldwide Perspective. International Biological
Study on Cervical Cancer (IBSCC) Study Group. Journal of the National Cancer
Institute 87(11), 796–802 (1995)

4. Chan, P.K., Cheung, J.L., Cheung, T.H., Lo, K.W., Yim, S.F., Siu, S.S., Tang,
J.W.: Profile of viral load, integration, and E2 gene disruption of HPV58 in normal
cervix and cervical neoplasia. Journal of Infectious Diseases 196(6), 868–875 (2007)

5. Chan, S.Y., Delius, H., Halpern, A.L., Bernard, H.U.: Analysis of genomic se-
quences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. Jour-
nal of Virology 69(5), 3074–3083 (1995)

6. Combita, A.-L., Touz, A., Bousarghin, L., Christensen, N.D., Coursaget, P.: Iden-
tification of Two Cross-Neutralizing Linear Epitopes within the L1 Major Capsid
Protein of Human Papillomaviruses. Journal of Virology 76(13), 6480–6486 (2002)

7. Cordano, P., Gillan, V., Bratlie, S., Bouvard, V., Banks, L., Tommasino, M.,
Campo, M.S.: The E6E7 oncoproteins of cutaneous human papillomavirus type
38 interfere with the interferon pathway. Virology 377(2), 408–418 (2008)

8. de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., Zur Hausen, H.: Clas-
sification of papillomaviruses. Virology 324(1), 17–27 (2004)

9. Diallo, A.B., Makarenkov, V., Blanchette, M.: Exact and Heuristic Algorithms for
the Indel Maximum Likelihood Problem. Journal of Computational Biology 14(4),
446–461 (2007)

10. Diallo, A.B., Makarenkov, V., Blanchette, M.: Finding maximum likelihood indel
scenarios. In: Proceeding of the fourth Recomb satellite conference on Comparative
Genomics, pp. 171–185 (2006)

11. Graham, D.A., Herrington, C.S.: HPV-16 E2 gene disruption and sequence varia-
tion in CIN 3 lesions and invasive squamous cell carcinomas of the cervix: relation
to numerical chromosome abnormalities. Molecular Pathology 53, 201–206 (2000)

12. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood. Systematic Biology 52, 696–704 (2003)

13. Goldman, N., Anderson, J.P., Rodrigo, A.G.: Likelihood-based tests of topologies
in phylogenetics. Systematic Biology 49, 652–670 (2000)

14. Bchen-Osmond: ICTVdB - The Universal Virus Database C (ed). Columbia Uni-
versity, New York, USA

15. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.)
Mammalian protein metabolism, pp. 21–123. Academic Press, London (1969)

16. Kimura, M.: A simple method for estimating evolutionary rate of base substitu-
tion through comparative studies of nucleotide sequences. Journal of Molecular
Evolution 16, 111–120 (1980)

17. Kishino, H., Hasegawa, M.: Evaluation of the maximum likelihood estimate of the
evolutionary tree topologies from DNA sequence data, and the branching order in
Hominoidea. Journal of Molecular Evolution 29, 170–179 (1989)

140 D. Badescu et al.

18. Muñoz, N.: Human papillomavirus and cancer: the epidemiological evidence. Jour-
nal of Clinical Virology 19(1-2), 1–5 (2000)

19. Muñoz, N., Bosch, F.X., de Sanjos, S., Herrero, R., Castellsagu, X., Shah,
K.V., Snijders, P.J.F., Meijer, C.J.L.M.: Epidemiologic classification of human
papillomavirus types associated with cervical cancer. New England Journal of
Medecine 384, 518–527 (2003)

20. Muñoz, N., Bosch, F.X., Castellsagu, X., Daz, M., de Sanjose, S., Hammouda,
D., Shah, K.V., Meijer, C.J.: Against which human papillomavirus types shall
we vaccinate and screen? The international perspective. International Journal of
Cancer 111, 278–285 (2004)

21. Narechania, A., Chen, Z., DeSalle, R., Burk, R.D.: Phylogenetic incongruence
among oncogenic genital alpha human papillomaviruses. Journal of Virology 79,
15503–15510 (2005)

22. Prétet, J.L., Charlot, J.F., Mougin, C.: Virological and carcinogenic aspects of
HPV. Bulletin Academic National de Medecine 191(3), 611–613 (2007)

23. Robinson, D.R., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical
Biosciences 53, 131–147 (1981)

24. Shimodaira, H., Hasegawa, M.: Multiple comparisons of log-likelihoods with appli-
cations to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116
(1999)

25. Shimodaira, H., Hasegawa, M.: CONSEL: for assessing the confidence of phyloge-
netic tree selection. Bioinformatics 17, 1246–1247 (2001)

26. Siepel, A., Pollard, K.S., Haussler, D.: New methods for detecting lineage-specific
selection. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.
(eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 190–205. Springer, Heidelberg
(2006)

27. Tamura, K., Nei, M.: Estimation of the number of nucleotide substitutions in the
control region of mitochondrial DNA in humans and chimpanzees. Molecular Bi-
ology and Evolution 10, 512–526 (1993)

28. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
positions-specific gap penalties and weight matrix choice. Nucleic Acids Re-
search 22, 4673–4680 (1994)

29. Van Ranst, M., Kaplanlt, J.B., Burk, R.D.: Phylogenetic Classification of Human
Papillomaviruses: Correlation with clinical manifestations. Journal of General Vi-
rology 73, 2653–2660 (1992)

30. Varsani, A., Van der Walt, E., Heath, L., Rybicki, E.P., Williamson, A.L., Mar-
tin, D.P.: Evidence of ancient papillomavirus recombination. Journal of General
Virology 87, 2527–2531 (2006)

31. Wang, J.T., Ding, L., Gao, E.S., Cheng, Y.Y.: Analysis on the expression of human
papillomavirus type 16 E2 and E6 oncogenes and disruption of E2 in cervical
cancer. Zhonghua Liu Xing Bing Xue Za Zhi 28(10), 968–971 (2007)

32. Wilson, R., Ryan, G.B., Knight, G.L., Laimins, L.A., Roberts, S.: The full-
length E1ˆE4 protein of human papillomavirus type 18 modulates differentiation-
dependent viral DNA amplification and late gene expression. Virology 362(2), 453–
460 (2007)

An Evolutionary Study of the Human Papillomavirus Genomes 141

Appendix

Gene E2: HPVs-16 and 18

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

92
0

96
0

10
00

10
40

10
80

11
20

11
60

12
00

12
40

12
80

13
20

13
60

14
00

14
40

14
80

15
20

15
60

16
00

Q

Gene E2: Squam Types
(HPV-6,11,16,18,26,31,33,35,39,45,52,53,55,56,58,59,66,73,81,82,83)

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

92
0

96
0

10
00

10
40

10
80

11
20

11
60

12
00

12
40

12
80

13
20

13
60

14
00

14
40

14
80

15
20

15
60

16
00

Q

Gene E2: Adeno Types
(HPV-16,18,31,33,35,39,45,58,59)

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

80
0

84
0

88
0

92
0

96
0

10
00

10
40

10
80

11
20

11
60

12
00

12
40

12
80

13
20

13
60

14
00

14
40

14
80

15
20

15
60

16
00

Q

Fig. 5. The variation of the hit identification function Q for: (a) High-Risk HPVs
(HPV-16 and 18), (b) Squam cancer causing HPVs, and (c) Adeno cancer causing
HPVs obtained with the non-overlapping sliding widows of width 20 during the gene
E2 scan

142 D. Badescu et al.

Gene E6: HPVs-16 and 18

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

Q

Gene E6: Squam Types
(HPV-6,11,16,18,26,31,33,35,39,45,52,53,55,56,58,59,66,73,81,82,83)

0

0,05

0,1

0,15

0,2

0,25

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

Q

Gene E6: Adeno Types
(HPV-16,18,31,33,35,39,45,58,59)

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

44
0

48
0

52
0

56
0

60
0

64
0

68
0

72
0

76
0

Q

(a)

(b)

(c)

Fig. 6. The variation of the hit identification function Q for: (a) High-Risk HPVs
(HPV-16 and 18), (b) Squam cancer causing HPVs, and (c) Adeno cancer causing
HPVs obtained with the non-overlapping sliding widows of width 20 during the gene
E6 scan

An Algorithm for Inferring Mitogenome

Rearrangements in a Phylogenetic Tree

Matthias Bernt1, Daniel Merkle2, and Martin Middendorf1,�

1 Parallel Computing and Complex Systems Group, Department of Computer
Science, University of Leipzig, Germany

{bernt,middendorf}@informatik.uni-leipzig.de
2 Department of Mathematics and Computer Science,

University of Southern Denmark
daniel@imada.sdu.dk

Abstract. Given the mitochondrial gene orders and the phylogenetic
relationship of a set of unichromosomal taxa, we study the problem of
finding a plausible and parsimonious assignment of genomic rearrange-
ment events to the edges of the given phylogenetic tree. An algorithm
called algorithm TreeREx (tree rearrangement explorer) is proposed for
solving this problem heuristically. TreeREx is based on an extended ver-
sion of algorithm CREx (common interval rearrangement explorer, [4])
that heuristically computes pairwise rearrangement scenarios for gene
order data. As phylogenetic events in such scenarios reversals, trans-
positions, reverse transpositions, and tandem duplication random loss
(TDRL) operations are considered. CREx can detect such events as pat-
terns in the signed strong interval tree, a data structure representing gene
groups that appear consecutively in a set of two gene orders. TreeREx
then tries to assign events to the edges of the phylogenetic tree, such
that the pairwise scenarios are reflected on the paths of the tree. It is
shown that TreeREx can automatically infer the events and the ancestral
gene orders for realistic biological examples of mitochondrial gene or-
ders. In an analysis of gene order data for teleosts, algorithm TreeREx is
able to identify a yet undocumented TDRL towards species Bregmaceros
nectabanus.

1 Introduction

Phylogenetic hypothesis are often supported by the computation of parsimo-
nious scenarios based on genome-wide rearrangement operations. Especially mi-
tochondrial gene orders became a very fruitful source for such investigations as
the number of genes is not too large and for more than 1000 species the mito-
chondrial gene order is known. In literature inversions and transpositions are the
most often considered genomic rearrangement operation for phylogenetic recon-
struction [5, 18]. Even when only inversions and a small number of gene orders

� This work was supported by the German Research Foundation (DFG) through the
project “Deep Metazoan Phylogeny” within SPP 1174.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 143–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 M. Bernt, D. Merkle, and M. Middendorf

are considered, recovering a most parsimonious scenario is usually NP-complete
(e.g. [8]). Considering combinations of rearrangement operations in event-based
reconstruction methods is done very rarely.

In recent biological studies it was shown that the so called tandem duplica-
tion random loss (TDRL) operation is a genomic rearrangement operation that
can be found several times in the mitochondrial gene order evolution, e.g., in
millipedes [12] and deep-sea gulper eels [11]. A TDRL duplicates a contiguous
segment of genes, followed by the loss of one copy of each of the duplicated genes.
The biological fact that gene groups are often preserved during evolution lead
to the utilization of so-called common intervals [10, 20] and strong interval trees
(SIT) [7, 16] (also called PQ-trees), which are data structures that reflect prop-
erties of contiguous gene groups. The recently proposed algorithm CREx infers
heuristically a rearrangement scenario between two gene orders [4]. This algo-
rithm computes a SIT for a pair of genomes and identifies patterns in the SIT
that indicate certain genomic rearrangement operations. Reverse transpositions,
transpositions, reversals, and TDRLs can be identified by this strategy. With
this set of operations CREx is well suited for studying mitochondrial gene order
evolution. In [17] the algorithm CREx was used to manually infer the evolution
of mitochondrial gene orders in Echinoderms based on pairwise inspection of the
gene orders.

In this paper we introduce an extension of algorithm CREx so that it can better
handle TDRL/reversal combinations. Moreover, we propose an algorithm called
TreeREx (tree rearrangement explorer) which takes as input a binary rooted
phylogenetic tree and the gene orders of a set of taxa and heuristically infers
the corresponding rearrangement operations on the edges of the tree. Algorithm
TreeREx utilizes algorithm CREx. We show the applicability of TreeREx on several
biological examples.

The paper is structured as follows. In Section 2 basic definitions are given.
Algorithm CREx is presented in Section 3. In Section 4 algorithm TreeREx is
introduced, and in Section 5 algorithm TreeREx is applied to a small biological
example. Results are given in Section 6. Section 7 concludes the paper.

2 Basic Definitions

2.1 Rearrangement Operations

A permutation of size n is a permutation of the elements in {1, 2, . . . , n}. A signed
permutation of size n is a permutation of size n where every element has an ad-
ditional sign (“+” or “−”) that defines its orientation (“+” is usually omitted).
In the following we call a signed permutation π = (π1, . . . , πn) just permutation.
A reversal ρR(i, j), 1 ≤ i ≤ j ≤ n applied to a signed permutation π of size
n transforms it into π ◦ ρR(i, j) = (π1, . . . , πi−1,−πj , . . . ,−πi, πj+1, . . . , πn).
A transposition ρT(i, j, k), 1 ≤ i ≤ j < k ≤ n applied to π transforms
it into π ◦ ρT(i, j, k) = (π1, . . . , πi−1, πj+1, . . . ,πk, πi, . . . , πj , πk+1, . . . πn). A
reverse transposition ρrT(i, j, k), with 1 ≤ i ≤ j ≤ n and (1 ≤ k < i)
or (j < k ≤ n), applied to π transforms it (here shown for j < k) into

An Algorithm for Inferring Mitogenome Rearrangements 145

π ◦ ρrT(i, j, k) = (π1, . . . , πi−1,−πk, . . . ,−πj+1, πi, . . . , πj , πk+1, . . . πn). A tan-
dem duplication random loss ρTDRL duplicates a contiguous segment of genes
in tandem, followed by the loss of one copy of each of the duplicated genes.
Note that TDRLs which have no effect on the gene order are excluded. Further-
more TDRLs which have the same effect as a transposition are handled as a
transposition. A scenario for two signed permutations π and σ is a sequence of
rearrangement operations that transforms π into σ. A sequence with a minimal
(weighted) number of operations is called parsimonious.

2.2 Common Intervals and Strong Interval Trees

An interval of a permutation π is a set of consecutive elements of the permutation
π. Let Π be a set of signed permutations of size n. A common interval [10, 20]
of Π is a subset of {1, 2, . . . , n} that is an interval in each π ∈ Π . The singletons
{i}, i ∈ {1, 2, . . . , n} and the set {1, 2, . . . , n} of all elements are called trivial
common intervals. Let C(Π) be the set of all common intervals of Π . Two
intervals c and c′ overlap if c ∩ c′ �= ∅, c �⊂ c′, and c′ �⊂ c. If two intervals do not
overlap they commute. A common interval is called a strong common interval,
if it does not overlap with any other common interval. The set of all strong
common intervals can be computed in time O(kn) for k signed permutations of
size n [3]. The strong interval tree of two permutations Π = {π1, π2} is a tree
T (Π) where the nodes are exactly the strong common intervals of Π such that
the root node is the interval containing all elements, the leaves are the singletons,
and the edges are defined by the minimal inclusion relation of the intervals (i.e.
there is an edge between node c and c′ iff c′ ⊂ c and there is no node c′′ with
c′ ⊂ c′′ ⊂ c). Each node is given a sign (+ or −). If the children of a node
appear in the same order in both input gene orders, the node is called linear
increasing (+); if the children of a node appear in opposite order in the two gene
orders, it is linear decreasing (−); otherwise the node is called prime. For a more
comprehensive introduction of SITs see [2]. The importance of the SIT is that it
greatly facilitates the identification of the genome rearrangement operations in
algorithms CREx and TreeREx.

A genomic rearrangement operation ρ applied to one of the permutations
π ∈ Π is said to be preserving for Π if it does not destroy any common interval
c ∈ C(Π) (i.e., C(Π) = C(Π ∪ {π ◦ ρ})). An operation is not preserving, if
there exists a common interval, such that it does not exists after applying the
rearrangement operation.

3 Algorithm CREx

CREx [4] is an algorithm to heuristically determine preserving rearrangement sce-
narios for pairs of unichromosomal genomes. The algorithm uses the fact that
each of the four rearrangement operations that are considered here leads to a
pattern in the SIT. To illustrate this each of the four rearrangement operations is
applied to the identity permutation and the resulting SIT is computed. Figure 1

146 M. Bernt, D. Merkle, and M. Middendorf

Fig. 1. Top: Genomic rearrangement events considered in CREx and TreeREx; Bottom:
Strong interval tree of the identity permutation and the resulting permutation after
applying the corresponding genomic rearrangement event; From left to right: reversal,
transposition, reverse transposition, and tandem duplication random loss

shows the applied rearrangement operations and the resulting SITs. More for-
mally, the following patterns appear for the different operations when applied to
a permutation π.

– If a reversal ρR(i, j) is applied, a linear node with a linear parent node of
opposite sign occurs in the corresponding SIT (see also [2]). The linear node
reflects the common interval of all elements that are inverted.

– If a transposition ρT(i, j, k) is applied, the corresponding SIT has a linear
node with elements {πi, . . . , πk} that has two linear children reflecting the
common intervals {πi, . . . , πj} and {πj+1, . . . , πk}. The sign of the node must
be different from the signs of the child nodes.

– If a reverse transposition ρrT(i, j, k) is applied, the corresponding SIT has a
linear node with elements {πi, . . . , πk}. One child is a linear node reflecting
the common interval of elements {πi, . . . , πj} that are not inverted due to the
reverse transposition. This child must have the same sign as its parent. The
other involved elements are singletons as child nodes of node {πi, . . . , πk}
which must have a different sign.

– A tandem duplication loss operation ρTDRL leads to a prime node reflecting
all the elements involved in the rearrangement operation.

Algorithm CREx computes for two input permutations π1 and π2 the strong inter-
val tree for these permutations. Then CREx searches for patterns corresponding
to rearrangement operations. If a pattern is identified, the corresponding rear-
rangement operation ρ is included in the scenario to be computed and the next
pattern is searched in the strong interval tree of π1 ◦ ρ and π2 (the pattern for ρ
will not occur in this strong interval tree). This process is repeated until a com-
plete scenario is inferred. Note that the described patterns may be obfuscated if
overlapping rearrangements have taken place, e.g. in the extreme case of rear-
rangement hot spots prime nodes will emerge. Operations inferred from different
nodes are commutative as the corresponding strong intervals commute. Obvi-
ously, the search order for patterns is very important. If reversals are identified
before reverse transpositions and transpositions, then all reverse transpositions
and transpositions would be inferred as being reversal operations in the scenario.
Therefore, the search order for the patterns of the genomic rearrangement op-
erations is i.) transpositions, ii.) reverse transpositions, iii.) reversals, and iv.)

An Algorithm for Inferring Mitogenome Rearrangements 147

TDRL operations. Note that this order introduces a bias which is resolved in an
extension described in Section 4.3.

Special care has to be taken when prime nodes occur in the SIT. In algo-
rithm CREx a prime node is an indicator for one or several TDRLs. As a TDRL
operation will not change the sign of the elements involved, reversals are uti-
lized to equalize the sign of all the elements in a prime node. Algorithm CREx
uses a heuristic approach to identify a parsimonious number of reversals and
TDRLs for the corresponding prime node. Let π1 and π2 be the two permu-
tations of the elements in the prime node. Two variants are now included in
the latest version of CREx to infer the reversals that are needed: i.) (reversals
first) a set of reversals is applied to the origin permutation π1 to equalize the
signs (with respect to π2), and then, starting from the resulting permutation,
the minimum of number of TDRLs is computed [9]; or ii.) (reversals last) first
a set of reversals is applied to π2 (resulting in π′

2, such that all the signs a
equalized with respect to π1). Then a minimal number of TDRLs is inferred
to transform permutation π1 to permutation π′

2. Note that the number of dif-
ferent possible parsimonious scenarios to equalize the signs grows exponentially
in the number of blocks of elements that have different signs in both permuta-
tions. Algorithm CREx uses a brute-force approach and each possible minimal
set of reversals is tested, resulting in a potentially different number of TDRLs
per reversal set. Scenarios, for which the sum of the number of reversals and
TDRLs is minimal, are considered as possible scenarios. Furthermore, note that
the resulting scenarios for a prime node is not guaranteed to be parsimonious,
as a mixed sequence of reversals and TDRLs may result in a smaller scenario.
Algorithm CREx, a tutorial, and several detailed examples are available online at
http://pacosy.informatik.uni-leipzig.de/CREx.

4 Algorithm TreeREx

Although algorithm CREx supports a user to find parsimonious rearrangement
scenarios for a given phylogenetic hypothesis with more than two input genomes,
this process has to be done by manual inspection of pairwise scenarios. The over-
lap of pairwise scenarios for different pairs of taxa can be utilized to infer events
on the edges of a given phylogenetic tree. Algorithm TreeREx (tree rearrange-
ment explorer) automates this procedure. A given phylogentic tree is analyzed
in a bottum-up manner by iteratively considering triples and quadruples of gene
orders. TreeREx utilizes the pairwise comparisons suggested by CREx, assigns
genomic rearrangement events to edges of the phylogenetic tree, and computes
the permutations assigned to ancestral nodes.

4.1 Consistency

Let Π := {π1, . . . , πm} be a set of m input permutations and T = (V, E)
be a binary phylogenetic tree with the permutations π1, . . . , πm assigned to the
leaf nodes v1, . . . , vm. Let r(πi, πj) be the set of rearrangement events for the

http://pacosy.informatik.uni-leipzig.de/CREx

148 M. Bernt, D. Merkle, and M. Middendorf

pairwise scenarios between πi and πj , 1 ≤ i, j ≤ m (potentially inferred by al-
gorithm CREx). Let π be the permutation to be assigned to the the parent node
v of vi and vj . Let rε, ε ∈ {i, j} be the inferred rearrangement events on edge
(v, vε) ∈ E by intersecting all pairwise scenarios from any permutation towards
πε. Formally rε is computed by

rε :=
⋂

πl∈Π\πε

r(πl, πε), ε ∈ {i, j} (1)

Note that this intersection is well defined if the scenarios are commutative be-
cause the rearrangements in the scenarios can be handled as a set. As pointed
out above scenarios inferred by CREx are commutative as long as the corre-
sponding SITs do not imply scenarios for prime nodes consisting of more than
one operation. The treatment of ordered scenarios is explained in more detail in
Section 4.3.

If the genomic rearrangement operations ri applied inversely to πi lead to the
same permutation as applying the operations rj inversely to πj , then the inferred
ancestral permutation π = πi ◦ r−1

i = πj ◦ r−1
j of node v and the events ri and

rj are said to be consistent with tree T . An example with m = 4 is illustrated
in Figure 2.

The definition of consistency can be relaxed by restricting the set of intersected
scenarios in Equation 1. Suppose the number of intersected pairwise scenarios is
reduced by k, such that at least two sets are intersected for inferring the events
on an edge. Due to this relaxation, an ancestral permutation π may be inferred
by inversely applying potentially different intersections ri and rj to πi and πj

(nevertheless, also discarding scenarios may still lead to inconsistency). Note
that usually there exist several possible reductions by k scenarios, such that still
an ancestral permutation π can be inferred by inversely applying the result of
the intersection. The inferred ancestral permutations may be different depending
on the set of discarded scenarios. If a majority of all reductions by k scenarios
lead to the same permutation π, then π is said to be k-consistent (with tree T).
Obviously, a node is 0-consistent, iff it is consistent. If no k can be found, such
that a node is k-consistent, the node is inconsistent.

Example: Suppose in Figure 2 permutation π can not be inferred consistently.
Suppose when r(π3, π1) not considered for computing r1, an ancestor π is

Fig. 2. Consistency: For permutations Π = {π1, . . . , π4} the inferred events on the
edges in the tree T towards π1 (respectively π2) are r1 :=

⋂
πl∈Π\π1

r(πl, π1) (respec-

tively r2 :=
⋂

πl∈Π\π2
r(πl, π2)); if operations r1 applied inversely to π1 lead to the

same permutation as applying the operations of r2 inversely to π2, then π is consistent
with the tree T

An Algorithm for Inferring Mitogenome Rearrangements 149

inferred by inversely applying r1 to π1. Furthermore suppose, when r(π4, π2)
is not considered for computing r2, the same ancestor can be inferred by in-
versely applying r2 to π2. That is, two scenarios have been discarded to infer an
ancestral permutation. If most of the possible reductions by two scenarios lead
to π, π is 2-consistent (with T).

4.2 Method

Algorithm TreeREx traverses subtrees in a given (binary) phylogenetic tree in
a bottom-up manner beginning with subtrees induced by the permutations as-
signed to leaf nodes. More precisely, TreeREx iteratively selects a subtree with
three or four leaf nodes, which has a height of 2, and for which the permutations
assigned to the leaf nodes of the subtree are known. Then for the parents of
the leaf nodes of the subtree the ancestral permutations are computed and the
next subtree is selected. This continues until all (but the root node) have an
assigned permutation. More formally, TreeREx proceeds as follows. Let π1 and
π2 be permutations assigned to two nodes in the phylogenetic tree, and let these
two nodes be siblings. Let π be an unknown permutation to be assigned to the
parent node v of these siblings. Let π′ be the permutation assigned the sibling
v′ of v, and let π′

1 and π′
2 be the permutations assigned to the child nodes of

v′. If the permutation of π′ is known, TreeREx infers the permutation for π by
utilizing the subtree induced by π1, π2, and π′. If the permutation of v′ is not
known, TreeREx infers the permutation for π by utilizing the subtree induced
by π1, π2, π′

1, and π′
2. Note that due to the bottom-up traversal such an induced

subtree with three or four permutations assigned to leaf nodes can always be
found, as long as at least two inner nodes (the root and one child node of the
root) of the complete phylogenetic tree have no permutation assigned, yet.

Assigning permutations to inner nodes and events to the edges of an induced
subtree TS is done as follows. In a first step TreeREx checks if consistent ge-
nomic rearrangement operations and a consistent permutation can be found by
utilizing the necessary pairwise CREx scenarios of the leaves of TS. If this fails,
TreeREx tries to infer genomic rearrangement events by iteratively checking, if
a k-consistent permutation can be assigned to an inner node. Therefore k is in-
creased from 1 to its maximal possible value or until a k-consistent permutation
is found. In the case that no k-consistent permutation can be found for an inner
node, a fall-back strategy in applied as follows. For the scenario of π1 and π2

— computed by CREx — each possible ancestral permutation for π, based on
each possible partition of the events in the scenario of π1 and π2, is computed.
Let Γ (π1, π2) be the set of these permutations. To chose the best ancestral per-
mutation the scenarios of the assumed ancestral permutation π ∈ Γ (π1, π2) and
a permutation π′ ∈ Γ ′(π′

1, π
′
2) assigned to its sibling v′ are taken into account,

where Γ ′(π′
1, π

′
2) is the set of possible ancestral permutations for π′. (In the case

that π′ and its children π′
1 and π′

2 are consistent, it holds |Γ ′(π′
1, π

′
2)| = 1). Then

for each combination of ancestral permutations π ∈ Γ (π1, π2) and π′ ∈ Γ (π′
1, π

′
2)

the set of rearrangement events is computed. π and π′ are then chosen, such that
the sum of the (weighted) number of rearrangement events is minimal. Hence

150 M. Bernt, D. Merkle, and M. Middendorf

a weighting function (denoted by q in the pseudo-code of TreeREx) has to be
defined. The pseudo-code of algorithm TreeREx is given in the Appendix.

Algorithm TreeREx is designed to support biologist when analyzing real bi-
ological data and aims at inferring biologically evident events. Therefore we
followed the presented heuristic approach that includes the four most known
phylogenetic rearrangement operation in mitogenomes. Note that the outcome
of TreeREx includes the consistency of internal nodes, which are a good indicator
for the support of the inferred events. Having only consistent internal nodes in a
subtree strongly supports the infered rearrangements and ancestral gene orders.
Obviously, as even simplifications of the underlying problems are NP-complete
and as the number of possible scenarios for two species only can be immense,
this trade-off between usability and optimality is needed. If the outcome includes
inconsistent and a large sequence of rearrangement operations on one edge only,
then the support for this is very small. But, in contrast, if the outcome includes
mainly k-consistent nodes for small values of k, then the support for the inferred
events is very strong.

4.3 Extensions

So far algorithm TreeREx has been explained only in its basic version. Several
extensions are used in order to improve the reliability of the inferred phyloge-
nies. This includes the handling of non-commutative rearrangement operations,
using the direction information of TDRL events, and including shared adjacency
scenarios as alternative scenarios.

Ordered and Alternative Scenarios. The pairwise scenarios as computed
by CREx are inferred by heuristically identifying patterns in the SIT. So far we
assumed that there is only one pairwise scenario. In the data structure that
handles the scenario between two permutations, alternative scenarios can be
stored. A transposition can be replaced by three reversals or by a reversal and a
reverse transposition. A reverse transposition can be replaced by two reversals
or by a transposition and a reversal. For handling prime nodes CREx computes
different alternatives of reversals and subsequent TDRLs, or TDRLs with subse-
quent reversals (comp. Section 3). Furthermore, we assumed so far, that events
of a scenario can be applied in a commutative manner, which is only true if the
SIT has linear nodes only. The individual events (combinations of reversals and
TDRLs) inferred by a prime node can not be applied commutatively but have
to be in a certain order.

Both alternative and ordered scenarios have to be handled properly when
the intersection of CREx scenarios are computed according to Equation 1.
Each alternative is handled seperately, e.g. the intersection of two alternative
scenarios is an alternative scenario consisting of the intersections of all-vs-all
alternatives. The intersection of an ordered sequence of events is the largest
common suffix shared with the other scenario. As a formal description is very
technical, this is illustrated with a small example.

An Algorithm for Inferring Mitogenome Rearrangements 151

Example: Let r1 = ρTDRL → ρR2 → ρR1 denote an ordered sequence of two rever-
sals and one TDRL. Let r2 = ρT||{ρR4 , ρR5 , ρR6} denote an alternative of either a
transposition ρT or three commutative unordered reversals. Let r3 = ρR2 → ρR1

and r4 = ρT|| {ρR4 , ρR6} denote two other sequences. Let r1||r2 and r3||r4 repre-
sent two pairs of alternative scenarios inferred by CREx. The intersection of these
scenarios leads to the scenario represented by ρR2 → ρR1 ||(ρT||{ρR4 , ρR6}).

Handling of Tandem Duplication Random Loss Events. TDRLs are in
general irreversible [9] and hence imply a direction of the corresponding edge in
the phylogenetic tree. TreeREx discards scenarios with TDRLs leading towards
the root node. Furthermore, applying a TDRL inversely for checking the consis-
tency of a permutation (comp. Section 4.1), needs special attention in TreeREx, as
only the TDRL is not symmetric. That is, if a TDRL is applied to a permutation
π1 leading to π2, applying the same TDRL to π2 usually does not lead to π1.

Inclusion of Shared Adjacency Scenarios. As presented so far CREx infers
only TDRLs and (if needed) reversals for prime nodes. In [21] a method was pre-
sented to heuristically infer (ordered) scenarios of transpositions and reversals.
The basic idea is to identify reversals and transpositions by a proper analysis
of shared adjacencies of the two input permutations. We included this method
and use the inferred reversal/transposition scenario as an alternative scenario
for handling prime nodes with algorithm TreeREx.

5 A Detailed Small Biological Example

The echinoderm phylogeny has been investigated intensely (e.g. [13]), but is
still heavily discussed [19]. To show the practical usefulness of TreeREx a small
biological example of mitochondrial gene orders of four echinoderms is used.
The gene orders are from the four taxonomic gropus Asteroidea (A), Echinodea
(E), Holothuridea (H), and Crinoidea (C). The gene orders derived from the
corresponding GenBank entries are given in the Appendix. The used topology
is given by ((A, E), H), C) [17] (see Figure 3). TreeREx traverses the tree in a
bottom up manner as follows.

Fig. 3. Phylogenetic tree as used in the illustrative small biological example; genomic
rearrangement operation inferred by algorithm TreeREx are denoted by ρ1, . . . , ρ5; inner
nodes for which TreeREx inferred ancestral permutations are denoted by v and v′

152 M. Bernt, D. Merkle, and M. Middendorf

nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H S1 nad5 -nad6 cob F rrnS E T CR P -Q N L1 -A W C -V

E CR P N L1 W -V nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H S1 nad5 -nad6 cob F rrnS T -Q -A C

Fig. 4. TDRL inferred by algorithm CREx for the scenario of Strongylocentrotus purpu-
ratus (E) towards Cucumaria miniata (H); (operation ρ2 in Figure 3)

P -Q N L1 -A W C -V M -D -CR -T -E -rrnS -F nad1 I nad2 Y rrnL G L2

F rrnS E T CR P -Q N L1 -A W C -V M -D Y G L2 nad1 I nad2 rrnL

Fig. 5. Operations inferred by algorithm CREx for the scenario of Florometra serratis-
sima (C) towards Strongylocentrotus purpuratus (E); left: reverse transposition (oper-
ation ρ3 in Figure 3); right: TDRL (operation ρ5 in Figure 3)

i.) The first subtree to be analyzed is given by ((A, E), H). Let v denote
the parent of A and E. The sibling of v is a node which has already an assigned
permutation (permutation H). Two events are predicted by CREx for the evolution
between H and A, i.e., CREx(A,H) = {ρ1, ρ2}, with ρ1 being a reversal of (-rrnL

. . . -P), and ρ2 being the TDRL (towards H) as shown in Figure 4. Furthermore,
CREx(E,A) = {ρ1} and CREx(E,H) = {ρ2}. The intersections define the predicted
events on the edges (v, A) and (v, E), i.e., r(v, A) = CREx(E,A) ∩ CREx(H,A) =
{ρ1} and r((v, E)) = CREx(A,E) ∩ CREx(H,E) = {}. Applying ρ1 inversely to A
leads to the same permutation as applying no event to E. This is a consistent
case and therefore the ancestor of A and E is E, which is assigned to node v.
Furthermore, event ρ1 is assigned to edge e1.

ii.) The second subtree analyzed by TreeREx is ((v, H), C), with E assigned
to v. Let v′ denote the parent of v and H (see Figure 3). The sibling of v′ is
the leaf node C and has therefore an assigned permutation. As stated above,
CREx(E,H) = {ρ2}. Furthermore, CREx(C,H) also includes ρ2 and therefore the
intersection is r(v′, H) = {ρ2}. The intersection of CREx(H,E) (3 TDRLs) and
CREx(C,E) is empty. As applying ρ2 inversely to H gives the same permutation as
applying no operation (inversely) to E, v′ is also consistent and permutation E is
also assigned to node v′. To infer the operations on the two edges incident to the
root node, we compute the pairwise scenario of C and E. CREx(C,E) = {ρ3, ρ4, ρ5}
with ρ3 being a reverse transposition as shown in the left part of Figure 5, ρ4

being a reversal of (-L2 . . . -nad1), and ρ5 being a TDRL event as shown in
the right part of Figure 5. CREx(E,C) leads to more than 3 events (not shown
here), and therefore TreeREx assigns ρ3, ρ4, and ρ5 to the edges incident to the
root node. As ρ5 is a TDRL it has to be on the edge towards v′. Without an
outgroup it is impossible to determine on which edge ρ3 and ρ4 occurred. Note,
that a manual analysis for inferring the rearrangement scenarios for this small
example has been presented in [17]. Algorithm TreeREx is capable of inferring
all these events automatically.

An Algorithm for Inferring Mitogenome Rearrangements 153

6 Results

In this section the mitogenomes of teleosts and echinoderms are analyzed with
algorithm TreeREx. Note that to the best of our knowledge there is no other
algorithm for inferring mitogenome rearrangements based on the four different
events as used in algorithm TreeREx. We utilized the mitochondrial gene orders
from [6] which were marked as complete. All gene orders were removed which
did not have the standard set of 37 mitochondrial genes (13 protein coding-,
2 rRNA-, and 22 tRNA- genes). For the tree topologies we utilized published
phylogenies.

6.1 Teleosts

For the analysis of the teleost mitogenomes we merged the phylogenies suggested
in [14] and [11]. Most of the teleosts have the typical vertebrate gene order (’TV ’)
which can be found e.g. in human mitochondrial genomes. Therefore subtrees
with identical gene order are collapsed. The result of the TreeREx analysis is
given in Figure 6. In can be seen, that all but one of the ancestral gene orders
were inferred consistent or k-consistent, k > 1. The only inconsistency occurred
for the ancestral permutation of Bregmaceros nectabanus. In [11] a mechanism
of mitochondrial gene rearrangement in gulper eels was proposed, which exactly
corresponds to the TDRL as found by TreeREx leading towards Eurypharynx
pelecanoides. The involved nodes in the phylogenetic tree are all inferred consis-
tently, hence there is a very strong support for this TDRL. Interestingly, another
TDRL was found in the mitogenomes of teleosts, namely the TDRL leading to-
wards Bregmaceros nectabanus). To the best of our knowledge, this TDRL has
not been documented in literature, yet. The TDRL overlaps with the transpo-
sition towards Caelorinchus kishinouyei, which leads to an inconsistent parent
of Bregmaceros nectabanus. Nevertheless, the subtree of the corresponding three

Fig. 6. Rearrangement events inferred by algorithm TreeREx; left: echinoderms;
right: teleosts; abbreviations used: R=reversal, T=transposition, rT=reverse trans-
position, TDRL=tandem duplication random loss; nodes indicate consistency: black
node=consistent, grey node=k-consistent with k > 0, white node=inconsistent; TV
stands for species that have the typical the vertebrate gene order

154 M. Bernt, D. Merkle, and M. Middendorf

S1 L1 ND5 -ND6 -E CYTB T -P F 12S V 16S L2 ND1 I -Q M ND2 W -A -N -C

L1 ND5 -ND6 -P F 12S V 16S ND1 -Q M -A -N -C S1 -E CYTB T L2 I ND2 W

Fig. 7. TDRL inferred by algorithm TreeREx for the scenario of a typical vertebrate
gene order towards the gene order of Bregmaceros nectabanus

species has a consistent root node, and can be explained with only one transpo-
sition and one TDRL. Therefore we conclude, that the genomic rearrangement
operations found by TreeREx are very likely. The TDRL and transposition are
depicted in Figure 7. The mitogenomes of teleosts can be seen as a relatively
easy data set, as many of the leaf nodes have the typical vertebrate gene order
as the assigned permutation. Nevertheless, besides the reverse transposition all
considered types of rearrangement operations occur. The computation time for
TreeREx was 0.2 seconds on a Laptop with 2Ghz processor.

6.2 Echinoderms

In Section 5 the gene order of four echinoderms was used to describe algorithm
TreeREx. In this subsection we utilize all known mitochondrial echinoderm gene
orders for the analysis of TreeREx. The phylogenetic tree for this echinoderm
data set has been obtained by a careful analysis of the mitochondrial protein
sequences in [17]. The operations inferred by TreeREx are depicted in Figure 6.
In [17] the same results were found for this tree by manual inspection of pairwise
scenarios. None of the ancestral permutations was inferred inconsistently, and
only two permutations were k-consistent with k > 0. The TDRL, that separates
Cucumaria miniata from the ancestral gene order of echinoids was discussed in
[1]. The ancestral state of ophiuroids is very difficult to infer, as the correspond-
ing permutations are known to be heavily rearranged (in [19] the ancestral state
of ophiuroids remains also unresolved). Although algorithm TreeREx infers a per-
mutation for this ancestral permutation, it utilizes a sequence of several genomic
rearrangement operations including three TDRLs. This is not very likely from a
biological point of view. Yet, if the ophiuroids are not considered, the resulting
operations have a strong support, and interestingly all four rearrangement oper-
ations considered in this paper are necessary to explain the evolutionary history.
The computation time of TreeREx was 0.1 seconds for this data set on a Laptop
with 2Ghz processor.

7 Conclusion

In this paper algorithm CREx has been extended to better handle alternative sce-
narios, ordered scenarios, and combinations of reversals and tandem duplication
loss events. CREx is an an algorithm to heuristically infer pairwise scenarios of
two given unichromosomal gene orders ([4]). Four biologically evident operations,
namely reversals, transpositions, reverse transpositions and tandem duplication

An Algorithm for Inferring Mitogenome Rearrangements 155

loss events are considered. Furthermore CREx tries to preserve conserved gene
groups in rearrangement scenarios. The main contribution of this paper is al-
gorithm TreeREx, that utilizes the pairwise scenarios as computed by CREx, to
automatically infer ancestral permutations and genomic rearrangement opera-
tions in a given binary phylogenetic tree. TreeREx was applied to biological data
sets of mitochondrial gene orders of echinoderms and of teleosts. In both data
sets we could identify genome rearrangement operations that are in strong corre-
spondence with published results. Furthermore, algorithm TreeREx was able to
identify a new strongly supported TDRL operation towards species Bregmaceros
nectabanus.

References

1. Arndt, A., Smith, M.J.: Mitochondrial gene rearrangement in the sea cucumber
genus cucumaria. Mol. Biol. Evol. 15(8), 9–16 (1998)

2. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not
always difficult. IEEE/ACM Transaction on Computational Biology and Bioinfor-
matics 4(1), 4–16 (2007)

3. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790.
Springer, Heidelberg (2005)

4. Bernt, M., Merkle, D., Ramsch, K., Fritzsch, G., Perseke, M., Bernhard, D.,
Schlegel, M., Stadler, P.F., Middendorf, M.: Crex: inferring genomic rearrange-
ments based on common intervals. Bioinformatics 23, 2957–2958 (2007)

5. Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in
animal mitochondrial phylogeny. J. Mol. Evol. 49, 193–203 (1999)

6. Boore, J.L.: Mitochondrial gene arrangement database (2006),
http://evogen.jgi.doe.gov/

7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and
System Sciences 13, 335–379 (1976)

8. Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15,
93–113 (2003)

9. Chaudhuri, K., Chen, K., Mihaescu, R., Rao, S.: On the tandem duplication-
random loss model of genome rearrangement. In: SODA, pp. 564–570 (2006)

10. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Gascuel, O., Moret,
B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 252–263. Springer, Heidelberg
(2001)

11. Inoue, J.G., Miya, M., Tsukamoto, K., Nishida, M.: Evolution of the deep-sea
gulper eel mitochondrial genomes: large-scale gene rearrangements originated
within the eels. Mol. Biol. Evol. 20, 1917–1924 (2003)

12. Lavrov, D.V., Boore, J.L., Brown, W.M.: Complete mtdna sequences of two mil-
lipedes suggest a new model for mitochondrial gene rearrangements: duplication
and nonrandom loss. Mol. Biol. Evol. 19, 163–169 (2002)

13. Littlewood, D.T.J., Smith, A.B., Cloug, h.K.A., Emson, R.H.: The interrelation-
ships of the echinoderm classes: morphological and molecular evidence. Biol. J.
Linn. Soc. 61, 409–438 (1997)

http://evogen.jgi.doe.gov/

156 M. Bernt, D. Merkle, and M. Middendorf

14. Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inous, J.G., Mukai, T., Satoh,
T.P., Yamagucki, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M., Nishida, M.: Ma-
jor patterns of higher teleost phylogenies: a new perspective based on 100 complete
mitochondrial dna sequences. Mol. Phyl. Evol. 26, 121–138 (2003)

15. Mooi, R., David, B.: Skeletal homologies of echinoderms. Paleont. Soc. Papers 3,
305–335 (1997)

16. Parida, L.: Using pq structures for genomic rearrangement phylogeny. Journal of
Computational Biology 13(10), 1685–1700 (2006)

17. Perseke, M., Fritzsch, G., Ramsch, K., Bernt, M., Merkle, D., Middendorf, M.,
Bernhard, D., Stadler, P.F., Schlegel, M.: Evolution of mitochondrial gene orders
in echinoderms. Mol. Phyl. Evol. (in press, 2008)

18. Sankoff, D.: Analytical approaches to genomic evolution. Biochimie 75, 409–413
(1993)

19. Scouras, A., Beckenbach, K., Arndt, A., Smith, M.J.: Complete mitochondrial
genome dna sequence for two ophiuroids and a holothuroid: the utility of protein
gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol.
Phyl. Evol. 31(1), 50–65 (2004)

20. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica 26(2), 290–309 (2000)

21. Zhao, H., Bourque, G.: Recovering true rearrangement events on phylogenetic trees.
In: Tesler, G., Durand, D. (eds.) RECMOB-CG 2007. LNCS (LNBI), vol. 4751,
pp. 149–161. Springer, Heidelberg (2007)

Appendix

A1. Mitogenomes Used in the Biological Example

– Acanthaster brevispinus (A):
cox1 R nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H S1 nad5 -nad6 cob F rrnS E

T CR -rrnL -nad2 -I -nad1 -L2 -G -Y D -M V -C -W A -L1 -N Q -P

– Strongylocentrotus purpuratus (E):
cox1 R nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H S1 nad5 -nad6 cob

F rrnS E T CR P -Q N L1 -A W C -V M -D Y G L2 nad1 I nad2 rrnL

– Cucumaria miniata (H):
cox1 R E CR P N L1 W -V nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H

S1 nad5 -nad6 cob F rrnS T -Q -A C M -D Y G L2 nad1 I nad2 rrnL

– Florometra serratissima (C):
cox1 R nad4L cox2 K atp8 atp6 cox3 -S2 nad3 nad4 H S1 nad5 -nad6 cob P -Q N L1

-A W C -V M -D -CR -T -E -rrnS -F -L2 -G -rrnL -Y -nad2 -I -nad1

A2. Pseudo-Code of Algorithm TreeREx

1: INPUT: A phylogenetic binary tree T =(V, E)with leaf nodes {π1, . . . , πn}
OUTPUT: A mapping E → R∗ (phylogenetic events on edges)
and a mapping V → Π (permutations for internal nodes)

2: while (∃ induced subtree TS of height 2 with 3 or 4 leaf nodes, for which
permutations are assigned to leaf nodes only) do

3: Let Π = {π1, . . . , πm} be the set of permutations assigned to the leaf
nodes of TS (m = 3 or m = 4 holds)

An Algorithm for Inferring Mitogenome Rearrangements 157

4: Let πi, πj be permutations assigned to sibling leaf nodes of TS, for which
no permutation is assigned to their parent node v

5: Let v′ be the sibling of v
6:

7: // Check if a consistent permutation can be inferred:
8: ri :=

⋂
π∈Π\πi

CREx(π, πi)

9: rj :=
⋂

π∈Π\πj
CREx(π, πj)

10: Let �i = πi ◦ r−1
i be the permutation computed by inversely applying ri

to πi

11: Let �j = πj ◦ r−1
j be the permutation computed by inversely applying rj

to πj

12: if (�i == �j) then
13: Assign all events ri and rj to their corresponding edges.
14: Assign the permutation π := �i to v.
15: else
16: // Check if a k-consistent permutation can be inferred:
17: k=0
18: while (no k-consistent permutation was found) ∧ (k is not maximal)

do
19: k=k+1
20: Similarly as in the consistent case, try to infer i.) a k-consistent per-

mutation to be assigned to v and ii.) k-consistent events to the cor-
responding edges

21: end while
22:

23: if no permutation was assigned to node v then
24: // Inconsistent case:
25: Compute all possible ancestral permutations Γ (πi, πj) for node v
26: Let πk, πl be the permutations assigned to the children of v′

27: if v′ has an assigned permutation π′ then
28: Γ (πk, πl) := {π′}
29: else
30: Compute all possible ancestral permutations Γ (πk, πl) of node v′

31: end if
32: // Assign permutation to v (and v′ if necessary) in a parsimonious

manner:
33: for all (π ∈ Γ (πi, πj) and π′ ∈ Γ (πk, πl)) do
34: Compute the weighted number of events q(CREx(π, π′))
35: end for
36: Assign π to v (and π′ to v′ if necessary), such that q(CREx(π, π′)) is

minimal
37: Assign the infered events to the edges
38: end if
39: end if
40: end while

Perfect DCJ Rearrangement

Sèverine Bérard1,2, Annie Chateau2, Cedric Chauve3, Christophe Paul2,
and Eric Tannier4

1 Université Montpellier 2, UMR AMAP, Montpellier, F-34000 France
2 CNRS, LIRMM, CNRS UMR55076, Université Montpellier 2, Montpellier, France

3 Department of Mathematics, Simon Fraser University, Burnaby (BC), Canada
4 INRIA, LBBE, CNRS UMR5558, Université de Lyon 1; Villeurbanne, France

Abstract. We study the problem of transforming a multichromosomal
genome into another using Double-Cut-and-Join (DCJ) operations. We
introduce the notion of DCJ scenario that does not break families of
common intervals (groups of genes co-localized in both genomes). Such
scenarios are called perfect, and generalize the notion of perfect reversal
scenarios. While perfect sorting by reversals is NP-hard if the family of
common intervals is nested, we show that finding a shortest perfect DCJ
scenario can be answered in polynomial time in this case. Moreover, while
perfect sorting by reversals is easy when the family of common intervals
is weakly separable, we show that the corresponding problem is NP-hard
in the DCJ case. These contrast with previous comparisons between the
reversal and DCJ models, that showed that most problems have similar
complexity in both models.

1 Introduction

A generic formulation of genome rearrangement problems is, given two genomes
and some allowed edit operations, to transform one genome into the other us-
ing a minimum number of operations. The solutions are used to estimate an
evolutionary distance between species, and to propose possible scenarios that
could explain the differences in terms of gene order between the considered
genomes (see [10,23,11] for example). Probably the most used algorithmic re-
sults related to genome rearrangements concern the problem of sorting signed
permutations by reversals. This problem aims at computing a shortest sequence
of reversals that transforms one signed permutation into another, and can be
solved in polynomial time [16,7,25]. It was later generalized to handle multi-
chromosomal genomes with linear chromosomes, using rearrangements such as
translocations and chromosomes fusions and fissions [17]. Here, we study a more
general rearrangement model on multichromosomal genomes, the Double-Cut-
and-Join model (DCJ), that was considered in several recent works [28,8,2,20,21].
In this model, temporary circular chromosomes can be created, which allows to
simulate rearrangements such as transpositions and block-interchanges using two
consecutive DCJs [28].

Another way (than pure parsimony) of handling gene order data is to consider
groups of genes that are co-localized with the homologous genes (genes having

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Perfect DCJ Rearrangement 159

a single common ancestor) in the genomes of different species.These groups are
likely together in the common ancestral genome and not disrupted during evo-
lution. For two permutations, such groups of co-localized genes can be modeled
by common intervals. Following the assumption that such common intervals are
preserved during evolution leads naturally to the study of rearrangement scenar-
ios that preserve common intervals. Such scenarios, which may not be shortest
among all scenarios, are called perfect [14]. Computing a reversal scenario of min-
imum length that preserves a given subset of the common intervals of two signed
permutations is NP-hard [14] and several papers have explored this problem, de-
scribing families of instances that can be solved in polynomial time [3,4,24,13]
and fixed-parameter tractable algorithms [4,5].

When comparing algorithmic properties of the reversal and DCJ models, the
classical problems seem to have similar behaviors: the distance and scenario com-
putations can be solved in polynomial time, yet the best complexity varies for the
latter by an O(

√
n) factor [25,8]; the median problems are both NP-hard1. In this

paper we extend the notion of perfect scenario to the DCJ model. We define a no-
tion of scenario preserving common intervals that also allows to use the property
of the DCJ model to create temporary circular chromosomes. While the general
problem of computing a shortest DCJ scenario that preserves a family F of com-
mon intervals (the F -perfect rearrangement problem) is still NP-hard, our results
point to interesting differences between the reversal and DCJ models. If the family
of common intervals is nested, we show that finding a perfect DCJ scenario of min-
imum length is solvable in polynomial time, while it is NP-hard for reversals [14];
if the family is weakly separable, we show that the DCJ problem is NP-hard, while
this case was solved in polynomial time for reversals [4].

The paper is organized as follows: in Section 2, we introduce genomes, DCJ
operations and common intervals. Then in Section 3, we define perfect DCJ sce-
narios for multichromosomal genomes and describe some basic properties of such
scenarios. In Section 4, we define the different properties of families of common
intervals, that result in different complexity status for the perfect rearrangement
problems. In Section 5, we describe a polynomial algorithm for the F -perfect re-
arrangement problem if F is nested, and in Section 6, we prove NP-hardness of
the general problem.

2 Genomes, Intervals and Rearrangements

We follow the modeling of a genome used in [8]. A gene a is an oriented se-
quence of DNA, identified by its tail at and its head ah. Tails and heads are
the extremities of the genes. An adjacency is an unordered pair of gene extrem-
ities. A genome is a set of adjacencies on a set of genes. Each adjacency in a
genome means that two gene extremities are consecutive on the DNA molecule.
1 The median problem consists in, given three genomes as an input, find a fourth one

(the median) that minimizes the sum of the distance from the median to the three
input genomes. This problem has been proved to be NP-hard for permutations in [12],
and for multichromosomal genomes in [26].

160 S. Bérard et al.

In a genome, each gene extremity is adjacent to zero or one other extremity. An
extremity x that is not adjacent to any other extremity is called a telomere, and
can be written as a telomeric adjacency xT with a symbol T (we use the same
notation for all telomeres).

For a genome Π on a set of genes, we define the graph GΠ : its vertex set is
the set of all gene extremities, and its edge set is composed of atah for every
gene a, plus the adjacencies of Π , except telomeric adjacencies. An example of
such a graph is drawn on Figure 1.

6 10

11

3
h t

t

h

t
ht

h

t

h

1312
ht h t t h t

1144 7 8
h tth h

9 2 5
t h thht

Fig. 1. The graph GΠex , where Πex is given by the union of C1 =
{T12t, 12h4h, 4t14t, 14h1t, 1h7h, 7t8t, 8hT}, C2 = {3t11t, 11h10t, 10h6t, 6h13h, 13t3h}
and C3 = {T9t, 9h2t, 2h5h, 5tT}

The graph GΠ is composed of disjoint paths and cycles. Each connected com-
ponent of GΠ is called a chromosome of Π . A chromosome is said to be linear
if it is a path, and circular if it is a cycle.

An interval of Π is a set of genes I, such that the subgraph of GΠ induced
by the extremities of genes in I is connected. For example, {12, 4, 14, 1, 7, 8} and
{14, 1, 7, 8} are intervals of genome Πex, which is represented on Figure 1. An
interval I is said to be a common interval of two genomes Π and Γ if it is an
interval of both.

Given a genome Π , a Double-Cut-and-Join is an operation ρ acting on two
adjacencies pq and rs of Π (p, q, r, s are gene extremities, some being possibly T
symbols; in particular, we consider valid the adjacency TT). The DCJ operation
cuts both pq and rs and joins either pr and qs, or ps and qr, creating two new
adjacencies. Examples of DCJ operations are shown in Figure 2.

12 4
t hh t

cut

14
t h

12 4
t hh t

14
t h

12 4
t hh t

join

7
t h

1
h t

14
t h

812 4
t hh t h t

14
t h

join

cutcut cut

1 7
thht

I

8
ht

I

1 7
thht

8
ht

t

h

8 7

1

t h

h

t

Fig. 2. Two examples of DCJ operations. Left: the DCJ cuts 4t14t and 7t8t and joins
4t7t and 14t8t (it is a reversal). Right: the DCJ cuts 14h1t and 8hT and joins 14hT
and 8h1t. This operation produces a circular chromosome. The first operation breaks
the interval I = {1, 7, 8} whereas the second preserves it.

Perfect DCJ Rearrangement 161

A DCJ operation can reverse an interval in a genome, fuse two chromosomes
into one, fisse one chromosome into two, or exchange two intervals from two
different chromosomes, both containing a telomere (reciprocal translocation).
Two consecutive DCJs may result in a block interchange (two intervals exchange
their positions), or a transposition (if these two intervals are consecutive): the
first DCJ extracts a set of genes and creates a circular chromosome, while the
second DCJ reinserts these genes elsewhere in a chromosome. The DCJ operation
is thus a very general framework, where temporary circular chromosomes allow
to simulate a wide range of genome rearrangements, introduced by Yancopoulos
et al. [28] and since adopted by many others [8,20,1], sometimes under the name
“2-break rearrangements” [2].

A sequence S of k DCJ operations transforming one genome Π into another
genome Γ is called a DCJ scenario of length k for the two genomes. The minimum
number of DCJ operations needed to transform Π into Γ is the DCJ-distance
and denoted by d(Π, Γ).

3 Perfect DCJ Scenarios

The adjacencies of a genome Π can be partitioned into three classes with respect
to a subset I of its genes: an adjacency pq (p and q possibly being T symbols)
is said to be inside I if the two genes of which p and q are extremities belong
to I; it is called outside if the two genes of which p and q are extremities do not
belong to I; it is a border adjacency if one of the genes of which p and q are
extremities belongs to I but not the other. In these three definitions, a T symbol
is considered to be outside I.

Note that an interval of Π has zero or two border adjacencies. Let I be
any set of genes of a genome Π , which has at most two border adjacencies.
A DCJ acting on Π preserves I if, in the resulting genome, I still has at
most two border adjacencies. For example, on Fig. 2, the DCJ operation on
the left does not preserve the interval {1, 7, 8} but the operation on the right
does preserve this interval. A DCJ that does not preserve I is said to
break I.

Given a family F of common intervals of two genomes Π and Γ , a DCJ
scenario transforming Π into Γ is said to be F -perfect if every DCJ preserves
all intervals in F . The F-Perfect DCJ problem consists in, given Π , Γ and
F , computing a F -perfect DCJ scenario of minimum length transforming Π
into Γ . When genomes are restricted to signed permutations (they have only
one chromosome) and temporary circular chromosomes are not allowed, this
definition coincides with the one of perfect scenarios of reversals [14,3,4,5,24,13].

With this definition of F -perfect DCJ scenarios the elements of an interval
I of F can be not consecutive at some point of such a scenario, provided that
the elements of I are split into at most one linear segment and possibly several
circular segments. This allows to use the property of the DCJ model to create
temporary circular chromosomes.

162 S. Bérard et al.

4 Families of Common Intervals

Given two genomes Π and Γ , two common intervals are said to overlap if their
intersection is not empty and none is contained in the other. A common interval
I of Π and Γ is strong if I does not overlap any other common interval. It is
maximal if it is strong and not contained in another common interval.

A family F of common intervals is weakly partitive if for every two overlapping
intervals I and J of F , I ∪ J , I ∩ J , I − J and J − I belong to F . We denote
by F∗ the unique smallest weakly partitive family that contains F ; F∗ can
be computed in polynomial time. It follows immediately from [4] that a DCJ
scenario is F -perfect if and only if it is F∗-perfect. A family F is called nested if
every element of F is strong (note this implies that F = F∗). F is called weakly
separable if every strong interval of F with at least three elements is the union
of two overlapping intervals of F . Of course, as soon as there are intervals of
F with at least three elements, the nested property and the weakly separable
property are mutually exclusive.

By definition, the sub-family of strong intervals of F∗ for a family F is nested.
It follows that we can represent the strong common intervals of Π and Γ by a
forest, in which each node is a strong common interval of F∗, and its children
are the maximal strong common intervals of F∗ it properly contains (see [4,18]).
Each component of this forest is a rooted tree, in which the root is a maxi-
mal common interval of Π and Γ . An example of such tree is given in Fig. 3.
Given a maximum common interval, the tree can be computed in linear time
and space [6,18]. A node of the forest of strong intervals is called prime if it
has at least four children and it properly contains no common interval includ-
ing more than one of its children. It is linear if it has two elements or it is
the union of two overlapping common intervals, both containing a subset of its
children. Any strong interval of F∗ is either prime or linear (see for instance
[4]).

It is known [14] that given a nested family of common intervals F of two per-
mutations, it is NP-hard to compute a perfect scenario of reversals of minimum

12

12, 4, 14, 1, 7, 8

4 14 1 7 8

4, 14, 1, 7

Fig. 3. The tree that represents the strong common intervals of the maxi-
mal common interval I = {12, 4, 14, 1, 7, 8} of Πex and Γ ex, given by the
union of C1 = {T12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t, 6hT} and C2 =
{T9t, 9h3t, 3h10t, 10h5t, 5h11h, 11t13h, 13tT}. Prime nodes are surrounded by an el-
lipse, while linear nodes are framed by a rectangle.

Perfect DCJ Rearrangement 163

length. Conversely, if F is weakly separable2, the algorithm described in [4] com-
putes an F -perfect reversal scenario in polynomial time. We prove here the exact
opposite results for multichromosomal genomes with DCJ operations.

5 F Nested: A Polynomial-Time Solvable Case

We give here an algorithm to solve the F -perfect DCJ problem if F is a nested
family.

Sorting an interval. We say that a common interval I is sorted in Π with respect
to Γ if the set of adjacencies inside I in Π contains the set of adjacencies inside
I in Γ . If a DCJ scenario results in a genome where I is sorted, we say that this
scenario sorts I.

We can distinguish different kinds of DCJ with respect to a common interval
I. A DCJ ρ cuts inside I if it cuts either two inside adjacencies or one inside
and one border adjacency. On the contrary, a DCJ ρ cuts outside I if it cuts
either two outside adjacencies, one outside and one border adjacency, two border
adjacencies, or one inside and one outside adjacency in the case I does not have
any border adjacency. Note that a DCJ does not break I if and only if it cuts
inside or outside I.

Lemma 1. If a DCJ scenario S0 between two genomes Π and Γ does not break
a common interval I, then there exists a DCJ scenario S = S1S2 of same length
as S0 for which all operations in S1 cut inside I and all operations in S2 cut
outside I.

This lemma, that is an equivalent to a lemma stated for reversals in [14], implies
that the DCJs that sort I may always be applied before the ones that rearrange
the remaining of the genome.

Outline of the algorithm. The algorithm can be decomposed into three main
steps:

1. Compute the maximal common intervals of Π and Γ . This can be done by
computing the maximal common connected components of GΠ and GΓ , with
techniques presented for example in [15].

2. For each maximal common interval I, compute the tree of (strong) intervals
that lie in I. By a preorder traversal of this tree, sort each node assuming
its children have been sorted, by a technique we describe further.

2 The terminology weakly separable is inspired by the notion of separable permutations,
that are the permutations whose common intervals with the identity define a strong
interval tree with no prime node. For a weakly separable family of common intervals,
the strong intervals forest can have prime nodes, but no edge can be incident to two
prime nodes, and these prime nodes belong to F∗ but not F and are then only
implicitly defined by F .

164 S. Bérard et al.

3. Finally, after all maximal common intervals have been sorted, compute a
parsimonious series of DCJ that creates all the remaining adjacencies of Γ ,
that are not inside any maximal common interval, for example with the
technique described in [8].

The first and last step use known techniques that are described in the liter-
ature. The core of our method is the second step, which we now describe into
details. Lemma 1 implies that a perfect scenario between two genomes can be
computed during a preorder traversal of each tree of common intervals in such
a way that, when processing a node I, all its children are already sorted with
respect to Γ .

The sorting direction of an interval. We now consider a strong common interval
I of Π and Γ . If I has border adjacencies in Π let xΠ and yΠ be the extremities
of genes that are not in I and belong to the two border adjacencies of I in Π
(they may be T symbols). If I has no border adjacencies in Π , let xΠ = yΠ = T .
If I has border adjacencies in Γ , let mΓ and MΓ be the extremities of genes
that are in I and belong to the two border adjacencies of I in Γ .

We wish to sort the interval I with respect to Γ , that is we want to obtain
a genome Π ′ from Π which contains every adjacency inside I in Γ . We will use
only DCJs that cut inside I, so in Π ′, there is a limited number of possibilities
regarding the border adjacencies of I in Π ′. If I has no border adjacencies in Γ ,
the set of adjacencies in Π ′ is unambiguous: it is the set of adjacencies inside I
in Γ , plus the adjacency xΠyΠ . But if I has border adjacencies in Γ , there are
three possibilities for the border adjacencies:

1. xΠmΓ and MΓ yΠ are adjacencies in Π ′, and in this case we say that I is
sorted positively;

2. xΠMΓ and mΓ yΠ are adjacencies in Π ′, and in this case Π is sorted
negatively;

3. mΓ MΓ and xΠyΠ are adjacencies in Π ′, and in this case Π is sorted neutrally

The way I is sorted is called its sorting direction 3 in Π ′.
We denote by Π \ I+ (resp. Π \ I− and Π \ IN) the genome obtained from

Π , in which I is sorted positively (resp. negatively and neutrally) with respect
to Γ . Note that Π \ IN contains a circular chromosome. It is clear that d(Π \
I−, Π \ I+) = d(Π \ I−, Π \ IN) = d(Π \ I+, Π \ IN) = 1.

As it was shown in [5] for the reversal model, the main difficulty for sorting
a genome while preserving common intervals is to choose among the sorting
directions of these intervals. The following lemma greatly simplifies this choice
in the DCJ model.

3 Note that the notions of positive or negative sorting direction of a common interval
are strongly related to the choice of gene extremities xΠ , yΠ , mΓ and MΓ (two
different choices are possible, and it will swap the positive and negative sorts). We
choose arbitrarily and independently for all strong intervals.

Perfect DCJ Rearrangement 165

Lemma 2. Let Π and Γ be two genomes and let I be a set of genes that has
two border adjacencies in Γ and at most two in Π. Then one and only one of
the three following possibilities holds:

– d(Π, Π \ I+) = d(Π, Π \ I−)−1 = d(Π, Π \ IN)−1 and d(Π, Γ) = d(Π, Π \
I+) + d(Π \ I+, Γ);

– d(Π, Π \ I−) = d(Π, Π \ I+)−1 = d(Π, Π \ IN)−1 and d(Π, Γ) = d(Π, Π \
I−) + d(Π \ I−, Γ);

– d(Π, Π \ IN) = d(Π, Π \ I+)−1 = d(Π, Π \ I−)−1 and d(Π, Γ) = d(Π, Π \
IN) + d(Π \ IN , Γ).

The algorithm. This yields a method for sorting a maximal common interval,
where the DCJ operations to apply can be computed using the algorithm pre-
sented in [8]:

Algorithm 1. F-Perfect sorting of a maximal common interval I of genomes Π and
Γ , given the strong interval tree T of a nested family F of common intervals in I

LET Π ′ = Π
FOR each interval I ′ ⊆ I of Π and Γ in a post-traversal order of T
{Note: all children of I ′ are sorted}
IF I ′ has no border adjacencies in Γ {Note: possible only if I ′ = I}

Sort I ′ with a minimum number of DCJs inside I ′ and outside its children
Else

Compute k = min(d(Π ′, Π ′ \ I ′+), d(Π ′, Π ′ \ I ′−), d(Π ′, Π ′ \ I ′N))
Sort I ′ with k DCJs inside I ′ and outside its children

LET Π ′ denote the resulting genome.

Lemma 3. Given two genomes Π and Γ , a nested family F of common intervals
and a maximal element I of F , Algorithm 1 computes a DCJ scenario that sorts
I with respect to Γ and preserves all the intervals of F contained in I. The
scenario is minimum, and no scenario achieves the same number of operations
and sorts I with another direction.

Lemma 2, together with Lemma 3, provides the general result:

Theorem 1. Given two genomes Π and Γ on n genes, and a nested family F
of common intervals, a minimum F-perfect scenario of length d(Π, Γ) can be
computed in time O(n2).

Note that this result defines a class of instances where a perfect scenario is also
parsimonious. These instances are defined only in terms of the structure of the
considered common intervals and not in terms of their breakpoint graph, which
differs from similar results in the reversal model [3,24,13].

166 S. Bérard et al.

6 F General (Even Weakly Separable): A Hardness
Result

In general, the problem of F -perfect DCJ rearrangement is hard, and even with
weakly separable families of common intervals. This is the DCJ version of NP-
hardness for reversals [14], but contrasts with the linear time solution when F
is supposed to be weakly separable [4].

Theorem 2. The F-perfect DCJ problem is NP-hard, even if F is weakly
separable.

The NP-hardness proof relies on a very simple pattern: it uses the fact that
it is possible to sort an interval of shape (3 2 1) in Π and (1 2 3) in Γ either
neutrally or negatively in three operations, and it is impossible to choose between
the two directions. No DCJ scenario sorts this pattern positively in less than 4
operations, while preserving the intervals {1, 2} and {2, 3}. From this, we can
deduce two interesting remarks that will be developed in an extended version of
this paper:

– The behavior of this perfect DCJ problem is different from the perfect rear-
rangement problem where temporary circular chromosomes have to be rein-
serted immediately to simulate block-interchanges. Indeed, for the latter,
a block interchange would have sorted (3 2 1) into (1 2 3) while preserv-
ing all intervals. It is not the case when the block-interchange has to be
simulated by two consecutive DCJs. This points an interesting difference be-
tween DCJ problems and block-interchange problems, and calls for further
thoughts on the relationship between the DCJ model and the reversals and
block-interchange model.

– The pattern that causes NP-hardness is limited to linear strong intervals
with three elements. It is then possible to devise FPT algorithms based on
the number of such patterns in the genomes. Like the FPT algorithms for
reversals [4,5], this should lead to efficient algorithms to solve the perfect
DCJ problem.

7 Conclusion

We proved in this paper that F -perfect sorting by DCJ is NP-hard in general,
and even if F is a weakly separable family of common intervals. On the other
hand, it has a polynomial time solution when F is nested. This contrasts with
perfect sorting by reversals that is hard if F is nested, and easy if F is a weakly
separable. The key to these results is the ability of DCJ to create temporary
circular chromosomes, that was already the important factor in the fact that
sorting with DCJ is simpler than with reversals [8]. This illustrates that the
DCJ model, both by its combinatorial simplicity and its pertinence for model-
ing genome rearrangements, offers an interesting way to attack several genome
rearrangement problems [22,27].

Perfect DCJ Rearrangement 167

In an extended version of this paper, we will describe a fixed parameter polyno-
mial algorithm for the problem of perfect DCJ rearrangement, using the number
of patterns used in the NP-hardness proof as a parameter. A natural problem
that could benefit from such an algorithm is the perfect reversal median [9],
or perfect DCJ-median [1,19]. We also plan to investigate the relationships be-
tween the general DCJ model and the reversal/translocation/block-interchange
model, as the problem of computing a perfect scenario seems to be the first
one where these two models differ. This seems to be surprising, as those two
models have always been considered to be equivalent, since two DCJs simu-
late block-interchanges. We will also address the case of genomes with circular
chromosomes using the notion of PC-trees [18]. Eventually, the algorithm we
describe for nested families of common intervals runs in quadratic time, but we
think there is a linear time solution, with a smart treatment of prime nodes.

Acknowledgments

C. Chauve is supported by grants from NSERC and SFU. C. Paul is supported
by the ANR grant ANR-O6-BLAN-0148-01 ”GRAAL”. E. Tannier is funded by
ANR JC05 49162 “REGLIS” and NT05-3 45205 “GENOMICRO”. A. Chateau
is supported by the ANR BLAN07-1 185484 “CoCoGen”.

References

1. Adam, Z., Sankoff, D.: The ABC of MGR with DCJ. Evol. Bioinformatics 4, 69–74
(2008)

2. Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolu-
tion. Theor. Comput. Sci. (in press, 2008)

3. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in
evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI),
vol. 3388, pp. 1–14. Springer, Heidelberg (2005)

4. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not
always difficult. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 4–16 (2007)

5. Bérard, S., Chauve, C., Paul, C.: A more efficient algorithm for perfect sorting by
reversals. Inform. Proc. Letters 106, 90–95 (2008)

6. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790.
Springer, Heidelberg (2005)

7. Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem. In: Mathe-
matics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)

8. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

9. Bernt, M., Merkle, D., Middendorf, M.: A fast and exact algorithm for the per-
fect reversal median. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS
(LNBI), vol. 4463, pp. 305–316. Springer, Heidelberg (2007)

168 S. Bérard et al.

10. Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Res. 12, 26–36 (2002)

11. Braga, M., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution
space of sorting by reversals with experiments and an application to evolution.
IEEE/ACM Trans. Comput. Biol. Bioinform (2008)

12. Caprara, A.: The reversal median problem. INFORMS J. Comp. 15, 93–113 (2003)
13. Diekmann, Y., Sagot, M.-F., Tannier, E.: Evolution under reversals: Parsimony and

conservation of common intervals. IEEE/ACM Trans. Comput. Biol. Bioinform. 4,
301–309 (2007)

14. Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen,
I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Hei-
delberg (2004)

15. Habib, M., Paul, C., Raffinot, M.: Common connected components of interval
graphs. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 347–358. Springer, Heidelberg (2004)

16. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46, 1–27 (1999)

17. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice: polynomial algorithm
for genomic distance problem. In: FOCS 1995, pp. 581–592 (1995)

18. Hsu, W.-L., McConnell, R.M.: PC trees and circular-ones arrangements. Theor.
Comput. Sci. 296, 99–116 (2003)

19. Lenne, R., Solnon, C., Stutzle, T., Tannier, E., Birattari, M.: Reactive stochastic
local search algorithms for the genomic median problem. In: van Hemert, J., Cotta,
C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)

20. Lin, Y., et al.: An efficient algorithm for sorting by block-interchange and its ap-
plication to the evolution of vibrio species. J. Comput. Biol. 12, 102–112 (2005)

21. Lu, L., Huang, Y., Wang, T., Chiu, H.-T.: Analysis of circular genome rearrange-
ment by fusions, fissions and block-interchanges. BMC Bioinformatics 7, 295 (2006)

22. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.)
COCOON 2008. LNCS, vol. 5092. Springer, Heidelberg (2008)

23. Murphy, W., et al.: Dynamics of mammalian chromosome evolution inferred from
multispecies comparative maps. Science 309, 613–617 (2005)

24. Sagot, M.-F., Tannier, E.: Perfect sorting by reversals. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 42–51. Springer, Heidelberg (2005)

25. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Discrete
Appl. Math. 155, 881–888 (2007)

26. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving
problems. In: Proceedings of WABI 2008 (2008)

27. Warren, R., Sankoff, D.: Genome halving with double cut and join. In: APBC 2008,
pp. 231–240 (2008)

28. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

Perfect DCJ Rearrangement 169

A The DCJ Distance and The Breakpoint Graph

The formula for the DCJ distance based on the breakpoint graph is much used
in the proofs of our results. The breakpoint graph of two genomes Π and Γ on
the same set of genes, denoted by BP (Π, Γ), is the bipartite graph which vertex
set is the set of extremities of the genes, and in which there is an edge between
two vertices x and y if xy is an adjacency in either Π (these are Π-edges) or Γ
(Γ -edges). Note that T symbols do not participate. Vertices in this graph have
degree zero, one or two; so the graph is a set of paths and cycles, where some
paths may have no edge (see Fig. 4).

t h h t t h t h h t t h

12 4 14 1 7 8
t h h

13 6
t

10
h t h

11
t t

3
h t h t h h t

9 2 5

Fig. 4. The breakpoint graph of the genomes Πex (see Figure 1) and Γ ex, given by
the union of C1 = {T12t, 12h14h, 14t7h, 7t4t, 4h1h, 1t8t, 8h2t, 2h6t, 6hT} and C2 =
{T9t, 9h3t, 3h10t, 10h5t, 5h11h, 11t13h, 13tT}. Πex-edges are dotted lines, and Γ ex-
edges are plain lines.

The DCJ-distance is immediately readable from the breakpoint graph, as
stated by Theorem 3, that restates the main result of [8] in terms of the break-
point graph in place of the adjacency graph4.

Theorem 3. [8] For two genomes Π and Γ , let c(Π, Γ) be the number of cycles
of the breakpoint graph BP (Π, Γ), and p(Π, Γ) be the number of paths with an
even number of edges. The DCJ distance is

d(Π, Γ) = n −
(

c(Π, Γ) +
p(Π, Γ)

2

)
.

The basis for this result is Lemma 4, that is implicit in [8], and states that any–
greedy– DCJ that creates an adjacency that is present in Γ but not in Π is
optimal.

Lemma 4. For two genomes Π and Γ , if a DCJ operation on Π results in a
genome Π ′ containing an adjacency that is present in Γ but not in Π, then
d(Π, Γ) = d(Π ′, Γ) + 1.

4 The breakpoint graph BP (Π,Γ), introduced for permutations in [16], is the line-
graph of the adjacency graph introduced in [8].

Sorting Genomes with Insertions, Deletions and

Duplications by DCJ

Sophia Yancopoulos1 and Richard Friedberg2

1 The Feinstein Institute for Medical Research, Manhasset NY 11030, USA
2 Department of Physics, Columbia University, NY, NY 10027, USA

“There Ain’t No Such Thing As A Free Lunch.”

The Moon Is a Harsh Mistress Robert A. Heinlein 1966

Abstract. We extend the DCJ paradigm to perform genome rearrang-
ments on pairs of genomes having unequal gene content and/or multiple
copies by permitting genes in one genome which are completely or par-
tially unmatched in the other. The existence of unmatched gene ends
introduces new kinds of paths in the adjacency graph, since some paths
can now terminate internal to a chromosome and not on telomeres. We in-
troduce ghost adjacencies to supply the missing gene ends in the genome
not containing them. Ghosts enable us to close paths that were due to
incomplete matching, just as null points enable us to close even paths
terminating in telomeres. We define generalalized DCJ operations on the
generalized adjacency graph, and give a prescription for calculating the
DCJ distance for the expanded repertoire of operations which includes
insertions, deletions and duplications.

1 Introduction

Insertions, deletions, and whole genome as well as tandem and segmental dupli-
cations are an important component of genome evolution [1] and should be part
of the arsenal of genome rearrangement algorithms. El-Mabrouk [2] included
insertions/deletions in the problem of sorting signed permutations by reversals,
and Marron et al [3] examined genomic distances under deletions and insertions.
We wished to extend the DCJ paradigm [4] to allow the computation of genomic
distance by DCJ in these contexts so as to have greater applicability in examples
arising in evolution, cancer, genetic disruptions leading to disease, analyses of
structural and copy number variation in humans [5] and between species [6].

The double cut and join operation (DCJ) [4] allows for the efficient sorting of
genomes having equal synteny block content (hereafter called “genes”) by a series
of rearrangement operations. These include translocations, inversions, fissions,
fusions, and the creation and absorption of circular intermediates. Genomes to
be sorted can be comprised of linear chromosomes, circular chromosomes, or a
combination of both. We propose a generalization of this treatment for genomes
having unequal gene content and/or duplications by a relatively straightforward
extension of the model.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 170–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 171

We commence (Section 2) with a review of the adjacency graph introduced by
Bergeron et al [7] for comparing two genomes with equal gene content and no
duplications. In Section 3 we present our generalization of the adjacency graph
for treating insertions and deletions. The central feature is the introduction of
new vertices (“ghosts”) to stand for gene ends that are absent in one of the
genomes. Ghost vertices are reminiscent of, but not the same as, null vertices
[4] used to furnish the missing caps in a genome with fewer linear chromosomes
than the other. In Section 4 we discuss issues that arise in constructing a rule
for the distance associated with a given sorting route between two genomes,
and propose a “surcharge” rule to deal with these issues. We also suggest the
possibility of allowing elements that are half ghost and half null, which in some
cases shorten the distance; we leave open the question whether these elements
should be allowed. In Section 5 we extend the treatment to genome pairs with
multiple copies, ending in Section 6 with some concluding remarks.

2 The Adjacency Graph

Fig. 1. Genome transformation
of a gene inversion within a circular.

We show genome graphs of the initial and
target genomes of a genomic transformation
in Figure 1. An arc joining the first and
last vertices of the initial genome indicates
genes 3 and 1 are connected to each other
in a circular chromosome. The genes them-
selves can be thought of as existing in the
white spaces between the points and have
been labeled by number in the figure. A
negative number indicates a gene in a re-
versed or inverted orientation such as in the
final genome which has a reversal of gene 2.

Fig. 2. Adjacency Graph
for transformation in Fig. 1.

The transformation can be elegantly represented
by the adjacency graph (Figure 2) introduced by
Bergeron et al [7]. In this graph, the initial genome
is displayed as a series of points at the top represent-
ing the adjacencies between gene ends. The target
genome is similarly portrayed by its respective adja-
cencies at the bottom of the graph. In the adjacency
graph, vertices with corresponding gene ends are
connected between initial and target genome rep-
resentations. We call these connecting lines green
lines. The gene ends comprising the vertices can
be individually labeled by head “h”and tail “t” as
shown in Figure 2. If the gene content is the same

in both genomes and there are no duplications, each vertex in the graph has at
most two green lines emanating from it. A DCJ swaps two gene ends in two
different vertices of the same genome in the adjacency graph.

172 S. Yancopoulos and R. Friedberg

The adjacency graph is dual [8] to the usual representation of the transforma-
tion, known as the breakpoint or edge graph [9], in that all points in the adjacency
graph correspond to lines in the edge graph, and conversely all lines in the adja-
cency graph (representing the gene ends) correspond to points in the edge graph.
For circular initial and target genomes, the resulting genomic distance by DCJ
operations [4] is simply

D = N − C (1)

where N is the number of genes in the initial (and target) genome and C the
number of cycles in the adjacency graph [10]. Cycles follow green lines along
continuous closed paths starting (and ending) at any particular adjacency. They
correspond one for one with cycles in the edge graph.

Fig. 3. An Adjacency Graph
containing paths

When linear chromosomes are present, some
vertices in the adjacency graph have only one
line connecting them to the other genome.
Gene ends representing ends of chromosomes are
called telomeres. In addition to closed cycles,
there are now paths, beginning and ending at
telomeres. A path is even if it begins and ends
in the same genome, odd if in opposite genomes.
Figure 3 shows the adjacency graph between an
initial genome consisting of a linear chromosome,
gene 1, and a circular chromosome, gene 2, and
target genome in which the circular chromosome
has been opened into a linear one. This graph contains two odd and one even
path. For genomes containing linear chromosomes, Bergeron et al [7] give a sim-
ple formula for the distance in terms of the numbers of cycles and of odd paths.

Fig. 4. Paths in Figure 3 are
closed by “green lines” (shown
as dashed) between caps (white
triangles). Telomeres are filled
semicircles.

It is possible to recast [10] this formulation
by completing each telomere vertex with a cap;
this fictitious gene end can be the origin of a
second green line which terminates on a cap in
the other genome, making it possible to close
all paths in the adjacency graph. The result of
acting with this procedure on Figure 3 is shown
in Figure 4. To carry it out, it may be necessary
(such as for the even path from 2h to 2t) to add
“null” vertices consisting of two caps in one of
the genomes so as to equalize the number of caps
in the two genomes. With this addition, the total
number of adjacencies as well as the number of
chromosomes become equalized for initial and
target genomes since a null point is counted as
an adjacency as well as a chromosome. Since all paths are closed into cycles, the
formula for genomic distance resembles that for genomes containing only circular
chromosomes:

D = N ′ − C′. (2)

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 173

Here N ′ includes all vertices in either genome, including telomere-cap vertices
and null (double-cap) vertices, and C′ includes the closed cycles in the origi-
nal graph as well as those formed by closing paths. The two formulations are
equivalent and can be shown to result in the same genomic distance [10].

We propose a straightforward extension of this model to genomes having un-
equal gene content as well as duplications by the addition of “ghost” adjacencies.
This device, similar to the addition of null points or chromosomes, allows us to
perform the Bergeron et al [7] analysis for genomes of unequal gene content.

3 Insertions and Deletions

Fig. 5. Insertion of gene 2

Consider two genomes having unequal gene
content, but without duplications. We show
it is possible to represent both genomes via
an adjacency graph. For equal gene con-
tent all gene ends in adjacencies in the
initial genome have partner gene ends in
the target genome; with unequal gene con-
tent there exist gene ends in one genome
without corresponding partners in the other.

Fig. 6. Fig. 5 Adjacency Graph

As an example of a transformation
with unequal gene content but no dupli-
cations, we show a pair of genomes in
Figure 5. The initial genome consists of a
single linear chromosome with two genes.
The target genome also consists of a sin-
gle linear chromosome but with an extra
gene (#2) inserted between the outer two.

Fig. 7. Addition of caps

Figure 6 shows the adjacency graph
for this transformation without caps. The
vertices containing two gene ends carry two
labels, while those which are telomeres con-
tain only one label. There are two paths ter-
minating in telomeres at each end, and one
path terminating in the unpaired gene ends
2t and 2h in the lower genome.

In Figure 7 we have added caps to the
figure as well as (dashed) green lines con-
necting caps in the upper genome to those
in the lower. This could have been done in
either of two ways since the different “0” labels are equivalent; we have chosen
the way that yields two cycles rather than one since maximizing the number of
cycles yields the smaller distance (also applicable to Figure 4). Now all vertices
carry two labels. There are no null vertices (double “0”) in this example because
both genomes have the same number of chromosomes. “True” adjacency vertices

174 S. Yancopoulos and R. Friedberg

such as (1h,3t) contain gene ends that exist in both genomes and correspond to
a pair of green lines. For “telomere vertices” one label represents the telomere

Fig. 8. Addition of the “ghost”
vertex (white circle) along with
caps allows all paths to be “closed”

and the other (“0”) is a cap. The telomere
paths are now closed. A single path terminat-
ing in unpaired gene ends, belongs to the un-
matched gene.

In Figure 8 we have added a ghost vertex
in the upper genome which bears the miss-
ing labels 2t, 2h. The path of Figure 7 can
now be closed, as shown by dotted lines, and
the number of cycles counted in the usual
manner. The initial and final genomes now
appear to have equal gene content, and the
transformation can be carried out by DCJ op-
erations, by treating the ghost vertex in the
same manner as the others.

Fig. 9. Adjacency Graph post DCJ

In Figure 9 we show the result of perform-
ing a single DCJ on Figure 8 about the ghost
vertex and vertex (1h,3t). The graph becomes
sorted into 1-cycles containing only one vertex
in each genome.

The addition of ghost vertices, as with the
addition of null vertices, allows us to close
paths in the adjacency graph.

4 Distance Rule for Insertions/Deletions

We now address the question: What distance should be assigned between
genomes of unequal content, for transformations with insertions/
deletions?

The most direct suggestion is to count one unit for each DCJ, just as we have
for genomes not requiring ghosts [4]. But this leads to certain paradoxes. To get
an idea of the difficulty, consider Figure 10a, which presents us with the problem
of converting a genome consisting of a single circular chromosome (gene 1) to
one consisting of another single circular chromosome (gene 2). The problem may
seem bizarre since the two genomes have no content in common. Let us, however,

1

2

1

2

(a) Genome Graph

1h,1t

2h,2t

1h,1t

2h,2t

(b) Adjacency Graph

2h,2t1h,1t

2h,2t1h,1t

2h,2t1h,1t

2h,2t1h,1t

(c) After adding ghosts

Fig. 10. Conversion of a circular containing gene 1 to one containing gene 2

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 175

follow the suggestion. The adjacency graph in Figure 10b for this transformation
has no green lines because no gene ends can be matched.

Bravely, we forge ahead, adding ghost vertices to complete the matching
(Figure 10c). With the addition of ghosts, the new prescription becomes:

D = N ′′ − C′′ (3)

where N ′′ now includes all vertices in either genome including telomere-caps,
nulls and ghosts, and C′′ includes all the closed cycles including those formed
by closing paths using caps and ghosts. We find two vertices in each genome,
and two cycles, giving a distance N ′′ − C′′ = 2 − 2 = 0. So it appears that the
initial genome of Figure 10 can be converted to the target genome at no cost at
all!

21

[void]

21

[void]

(a) Genome Graph

2h,1t1h,2t

[void]

(b) Adjacency Graph

2h,1t1h,2t

2h,1t1h,2t

(c) After adding ghosts

Fig. 11. Creation of a circular chromosome containing genes 1 and 2

A similar situation is depicted in Figure 11 which appears to show (using
equation 3 for genomes expanded to include ghosts) that a “void” genome (con-
sisting of nothing at all) can be transformed into one containing a single circular
chromosome of two genes without any cost.

4.1 The Triangle Inequality

Such phenomena can easily be found to take place in more realistic examples.
Consider the adjacency graph in Figure 12a. Initial genome A, has a string of
three genes (2, 3 and 4) to be deleted, leaving outer genes (1 and 5) in the target,
genome B. This may be compared with Figure 12b where the extra genes occur
in the target instead of the initial genome. This last example may be compared
with the example in Figure 6, an insertion of a single gene.

 1t

1t 4h,5t3h,4t1h,2t 2h,3t 5h

1h,5t 5h

A

B 1t

1t 4h,5t3h,4t1h,2t 2h,3t 5h

1h,5t 5h

1t AAAAAA

B

(a) Deletion of 3 genes in a linear

 1t

1t 2h,5t4t,2t1h,3t 3h,4h 5h

1h,5t 5h BB

AA’’

(b) Insertion of 3 genes into Fig. 12a target

Fig. 12. Insertion and Deletion in Linear Chromosomes

176 S. Yancopoulos and R. Friedberg

2h,3t

2h,3t 3h,4t

3h,4t1h,2t

2t,4h

4h,5t

1h,5t

0,1t

0,1t0,1t

5h,0

5h,0

5h,0

5h 0

AA

00 BB++CC

(a) C is ghost circular (2, 3, 4)

3h,4h

3h,4h 4t,2t

4t,2t1h,5t

1h,3t

3t,2h

2h,5t

0,1t

0,1t0,1t

5h,0

5h,0

5h,0

5h 0

BB++CC’’

AA’’

(b) C′ is ghost circular (2, 3, -4)

Fig. 13. Examples of Fig. 12 with caps and ghosts added

Initial genome A has two vertices for which neither gene end occurs in the
target, genome B, of Figure 12a. These can each be doubly coupled with a tar-
get ghost to produce two 1- cycles as shown in Figure 13a. After capping, the
telomeric vertices become part of two bystander 1- cycles, leaving two remaining
vertices, (1h,2t) and (4h,5t) containing two gene ends (2t and 4h) not present
in the final genome which will require an additional single ghost between them.
(See Figure 13a; compare with Figure 8 which has fewer ghosts.) With six ad-
jacencies and five cycles: N ′′ − C′′ = 6 − 5 = 1, so only one DCJ is required
to sort this problem with ghosts in place, similar to the passage of Figure 8 to
Figure 9.

Now, however, consider Figure 12b, in which the initial genome, B, is the
same as the target genome of Figure 12a, but the target genome, A′, has three
genes (2, 3, -4) inserted. Introducing ghosts and closing cycles in Figure 12b, we
again find (Figure 13b) 5 cycles and a net N ′′ − C′′ of one unit.

3h,4h1h,3t 2h,5t

2h,3t

 4t,2t

3h,4t1h,2t 4h,5t0,1t

0,1t

5h,0

5h,03h,4h1h,3t 2h,5t

2h,3t

4t,2t

3h,4t1h,2t 4h,5t0 1t0,1t

0,1t0 1t

5h 0

5h,0

5h,0

5h 0 AA’’

AA

Fig. 14. Direct comparison of A and A′

A paradox emerges when we con-
sider the distance between genomes
A and A′ directly. These have equal
gene content but are rearranged from
one another. If we form the adjacency
graph between them in the normal
way and close the paths terminating
in caps we arrive at Figure 14 which
has six adjacencies and three cycles.
Sorting it requires 6− 3 = 3 DCJs to
perform the rearrangement.

AA AA’’

BB

||AA ||

||AB|| ||BA ||

Fig. 15. Triangle Inequality
AA′ ≤ AB + BA′

But now the triangle inequality, expected
of “reasonable” distance metrics and illus-
trated in Figure 15, is violated, as Figures
13a (AB) and 13b (BA′) each show a dis-
tance of only 1. That is, the N ′′−C′′ distance
AA′ = 3 is greater than (rather than being
less than or equal to) the sum of AB = 1
and BA′ = 1.

It is possible to arrive at an alter-
native way of connecting A to A′ by
concatenating Figures 13a and 13b. Here, N ′′ − C′′ = 9 − 7 = 2. The
first DCJ converts the graph into Figure 13b, plus some 1-cycles; the second

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 177

2h,3t1h,2t

2t,4h 2h,3t

3h,4t

3h,4t

4h,5t

1h,3t 5h,0

5h,05h,0

5h 0

4t,2t3h,4h 553t,2h

3h,4h 4t,2t 552h,5t

0,1t

0,1t

0,1t

0 1t
00 AA’’++CC

00 AA++CC’’

Fig. 16. Alternative comparison of A and A′ using ghosts. C and C′ are ghost circulars
as in Fig. 13.

completes the sorting. It appears that use of ghosts has shortened the distance
from 3 arrived at by rearrangement scenario (Figure 14) to 2 (Figure 16).

4.2 The Free Lunch Problem

Thus the use of ghosts, introduced in order to bring the unequal content prob-
lem into our scheme, threatens to disrupt the distance structure already estab-
lished for the equal content problem. This disruption is drastic in the case of an
equal content rearrangement involving N >> 1genes. The DCJ distance without
ghosts can easily be comparable to N ; but with ghosts, following the example of
Figure 16, it is reduced to O[1]. Moreover, this reduced distance is independent
of the complexity of the rearrangement, since it is based on the possibility of
simply removing all the genes and replacing them in the new order at nearly
zero cost. We call this the free lunch problem.

One’s first thought may be that Figure 16 should not be allowed as it might
be considered an improper use of ghosts to have the same gene ends (2h, 3t,
3h, 4t) appear as ghosts in both genomes. Perhaps this should be forbidden.
But that will not change the fact that Figures 13a and 13b taken together with
Figure 14 violate the triangle inequality. Moreover, it permits us to change a
genome (1, 2, 3, 4, 5) into (1, 6, 7, 8, 5) by simply removing the three middle
genes and putting in new ones. Thus it leaves us asserting that two genomes
with utterly dissimilar content can be closer together than two with the same
content rearranged. Such a solution is certainly unsatisfactory.

4.3 Surcharge Rule

Having pursued several alternatives, we arrive at the following proposal to com-
pute genomic distance uniquely in the case of unequal gene content via DCJ so
as to circumvent the free lunch problem.

The distance for a particular adjacency graph shall be the minimum
possible number of DCJs required to sort the graph after necessary
nulls and ghosts have been added, plus a surcharge of one for every
1-cycle (cycle having 1 vertex per genome) containing a ghost vertex.

Applying these ideas to Figure 13 we see that there are two “ghostly 1-cycles”
(G1C) in Figure 13a so that the distance becomes 6 − 5 + 2 = 3. Likewise in

178 S. Yancopoulos and R. Friedberg

Figure 13b. Thus Figures 13a, b and 14 all have a distance of 3, and the triangle
inequality is no longer violated.

We note the flexibility in choosing ghost vertices. The missing gene ends may
be paired into ghost vertices in whatever way will minimize the distance. In
particular, this includes choosing arrangements minimizing the number of ghosts
in 1-cycles by placing them in 2-cycles (which contain 2 vertices in each genome).

2t,1t1h,2h

2h,1t1h,2t

Fig. 17. Bow Tie re-
sults after rearrang-
ing Fig. 11c ghosts
by DCJ

For example, with the surcharge rule, the Figure 10
transformation has a distance 2, due to the two G1C in
Figure 10c. The transformation shown in Figure 11, how-
ever, can be performed with less cost by setting up the
ghosts as shown in Figure 17, in which the two G1C have
been replaced by a single ghostly 2-cycle or bow tie. This
costs 1 cycle but avoids the surcharge, so the distance be-
comes 2 − 1 = 1, whereas in Figure 11c it would be 2.

Since each bow tie costs N ′′−C′′ = 2−1 = 1, it can add
two ghost vertices for the price of one G1C. It is conducive
to pair up ghost vertices whenever they exist in G1C and
combine them into bow ties. In particular, we observe, that
Figure 13a is no longer the optimal way to treat Figure
12a. It is better to avoid the surcharge by combining the
two G1C into a 2-cycle as in Figure 18. The distance now

becomes 6−4 = 2. Likewise Figure 13b can be replaced by a figure with distance
6 − 4 = 2. Since 2 + 2 > 3, the triangle inequality is satisfied.

Fig. 18. The two G1C in Fig. 13c are rear-
ranged into a “bow tie” by performing DCJ
which result in ghost circular C′′ = (2, -3, 4)

Similarly, when the surcharge rule
is applied to Figure 16, the distance
becomes 9 − 7 + 4 = 6, but the sur-
charge can be avoided as shown in
Figure 19 by using 2-cycles, so that
the distance becomes 9 − 5 = 4. The
“free lunch” is not offered, though,
since Figure 14, with no ghosts, still
gives a shorter distance.

The proof of the pudding is in the
deletion (or insertion) of a very long

string of, say M , genes. Without the surcharge this could be done at nearly

4h,5t

1h,3t

3h,4t2h,3t1h,2t

2t,4h 2h,3h 3t,4t

0,1t

0,1t

10,1t

20 1t

4h,4t3h,2t 3t,2h

3h,4h 4t,2t 2h,5t

5h,05h,0

5h,0

00 AA++CC22,,33++CC44

00 AA’’++CC’’’’

Fig. 19. Two pairs of G1C in Fig. 16 are rearranged
into bow ties by performing 2 DCJs. Ghost circular
C2,3 contains genes 2 and 3, C4, gene 4, and C′′ is
the same as in Fig. 18.

zero cost, since M−1 G1C can
appear in the adjacency graph
so that the large number M is
cancelled in N ′′ − C′′.

One might argue that in-
sertion of a long string is still
only a single rearrangement
operation, and should there-
fore only incur a cost of one.
Without the surcharge rule, a

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 179

large string could in effect be inserted (or deleted) at a cost of only 1. However,
this leads to the “free lunch” paradoxes associated with the triangle inequality.
The most complex transformations could be performed at a cost of only 2, by
first deleting everything and then inserting what is desired.

With the surcharge rule, it initially appears (not using bow ties) that the cost
of inserting or deleting a string of length M will be ∼ M . This solves the free
lunch problem with overkill, as the triangle inequality M + M ≥ M is satisfied
with a large margin. But it makes the insertion of a large string cost no more
than M individual insertions in different places.

With the distance rule we propose, and for an insertion size M, the surcharge
will add back the contribution M−1 so that the distance is O[M]. This, however,
is not the optimal distance; the surcharge can be avoided by using 2-cycles so
that one obtains roughly M/2 cycles with no surcharge, and the distance is
O[M −M/2] or O[M/2]. Now if the M genes are reinserted in a different order,
the distance by similar reasoning will again be O[M/2]. But if the reordering
of genes were done directly without ghosts and without first deleting and then
reinserting them, the distance at most would be O[M]. Since M/2 + M/2 ≥ M ,
the triangle inequality is not violated.

We may go through this explicitly with a particular M , say M = 23. Imagine
Figure 13a with 20 additional “middle” genes, so that the initial genome has
25 genes and N ′ = 26. Instead of two G1C there are now twenty-two, so that
the distance is 26 − 25 + 22 = 23. But a shorter distance is obtained by using
2-cycles as in Figure 18; instead of one 2-cycle with ghosts, there are now eleven,
plus one without ghosts and two 1-cycles without ghosts. Thus C′′ = 14, and
the distance is 26 − 24 = 12.

Thus the 23 middle genes have been deleted at a cost of 12. By reinserting them
in arbitrary order we would incur another cost of 12, making a total of 24. This is
to be compared with the “direct” (ghostless) reordering analogous to Figure 14,
in which there would be at least three cycles (two telomeric 1-cycles and one large
cycle) so that the cost would be at most 26 − 3 = 23. Again, no free lunch.

In conclusion, one sees that with the surcharge rule in place, the cost of in-
serting or deleting a string of length M is only ∼ M/2, achieved by using bow
ties (by combining 1-cycles into 2-cycles after performing DCJ). The triangle
inequality is satisfied efficiently, free lunch is avoided, but nevertheless the in-
sertion of a long string is less costly than inserting an equal number of genes in
separate operations.

4.4 Hybrid Paths

Returning to the Bergeron et al [7] language of “paths”, we note that before
nulls (two caps joined together) and ghosts have been added, there are paths
ending in telomeres, gene ends which terminate linear chromosomes, and paths
ending in gene ends unmatched in the other genome. In our discussion so far we
have used nulls to close the first kind of path and ghosts to close the second.
But there can also exist a hybrid path, which terminates at one end in a telomere
and at the other an unmatched gene end.

180 S. Yancopoulos and R. Friedberg

Fig. 20. Linear turning into a circu-
lar with a deletion

Consider Figure 20. The initial genome
has one linear chromosome with three
genes. It is to be converted into a circu-
lar chromosome with only two genes, one of
which is reversed. One may expect that the
sorting will require three steps, since it is
necessary to delete gene 2, reverse gene 3,
and circularize the linear chromosome.

Fig. 21. Fig. 20 after adding null,
ghost and caps

The “raw” adjacency graph displays two
paths, both even in that they start and end
in the same genome, and both hybrid in
that each one has a telomere at one end and
an unmatched gene end at the other. Pro-
ceeding as in the previous examples, we in-
troduce (Figure 21) a null vertex in the tar-
get genome to accommodate the two caps
in the initial genome, and a ghost vertex
to accommodate the unmatched gene ends.
The result is a single cycle, and a distance
of 4 − 1 = 3 as expected.

Fig. 22. Fig. 20 after adding nughs
ie a cap (white triangle) combined
with a half ghost (white semicircle)

The distance can be shortened, however,
if one is allowed to introduce a new entity,
a nugh, which is half null (ie a cap) and half
ghost. It can receive one green line from a
cap in the other genome, and one from an
unmatched gene end. As shown in Figure
22, two nughs can be connected into the
graph in such a way that the number of
cycles is 2 rather than 1. Thus the distance
becomes 4 − 2 = 2.

We have not reached a definitive judg-
ment on whether nughs ought to be
allowed. For the rest of this paper we as-
sume they are forbidden.

5 Multiple Copies

5.1 Equal Genomic Content

Suppose that some genes occur multiply in each genome, with each gene occur-
ring the same number of times in each. Once we have decided which copy of a
gene in the initial genome corresponds to which copy in the target, it is perfectly
straightforward to draw the adjacency graph accordingly, and the distance can
be found by the formula of Bergeron et al [7] or by closing paths just as if all
genes were distinct. No ghosts are needed, but nulls may be needed if there are
capped even paths.

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 181

Fig. 23. A way of matching multiple
copies of gene 1 in this graph yields 2
odd paths (beginning and ending in
different genomes), and no cycles

The decision, how to match copies in
the initial genome to those of the same
gene in the target, should depend on
which matching gives the shortest dis-
tance. For example, Figure 23 shows an
adjacency graph for the initial genome,
linear chromosome [1, -1, 2], and final
genome, linear chromosome [-1, 2, -1].
There are two odd paths and no cycles.
With three genes, the Bergeron et al [7]
distance: DB = N − C − (#odd paths)/2
gives the distance as = 3 − 0 − (2/2) = 2.
Alternativelywe may close the odd paths,
each to itself, obtaining two new cycles;
the same distance is given as 4 − 2 = 2.

Fig. 24. This alternative matching
strategy is preferred since it results in
a smaller distance

Figure 24, however, shows the adja-
cency graph of an alternative way of
matching copies. There are now two odd
paths and one cycle. The distance by the
Bergeron et al formula is 3−1−(2/2) = 1.
By closing paths it is 4− 3 = 1. Since this
distance is less than the one from Figure
23, the second way of matching copies,
by which the left end gene in the initial
genome is matched to the right end gene in the target, is preferred.

5.2 Unequal Genomic Content

Fig. 25. Left-hand gene 1 is
matched to target, right hand gene
-1 can be matched to a ghost

Now suppose that gene 1 is duplicated in the
initial but not in the target genome. Figure 25
shows an adjacency graph in which the initial
genome is [1, -1, 2] and the target is [1, 2]. The
left-hand gene 1 has been matched to the tar-
get 1 and the right-hand gene -1 has been left
unmatched. Caps have been matched in the
obvious (best) way, yielding two cycles and
one even path. When we close this path by
means of a ghost (1h,1t) in the target genome,
we shall have three cycles, giving a distance
4 − 3 = 1.

Fig. 26. A way of matching mul-
tiple copies of gene 1 in this graph
yields 2 odd paths and no cycles

Figure 26 shows an alternative adjacency
graph for the same problem, in which the gene
-1 in the initial genome has been matched to
the target 1, and the gene 1 in the initial
genome left hanging. Again the caps are con-
nected optimally. Here there is only one cycle,
and one even path. When the path is closed

182 S. Yancopoulos and R. Friedberg

by means of a ghost (1h,1t) in the target genome, there will be two cycles, giving
a distance 4-2 = 2. Therefore the second matching (Figure 26) is preferred.

6 Conclusion

6.1 Summary of Rules

We may summarize the proposed rules for drawing graphs and finding distances
by considering four cases:

i) Equal gene content, no duplication. This case has been treated in pre-
vious literature [4]. The adjacency graph is unique. Distance may be found
by the Bergeron et al [7] formula by counting genes, paths, and cycles, or by
closing paths with the aid of nulls where needed, and counting the resulting
adjacencies and cycles [10].

ii) Unequal gene content, no duplication. Again the adjacency graph
matching true gene end vertices is unique. Paths may terminate either in
caps or in unmatched gene ends. Ghosts are introduced so as to match the
unmatched gene ends; this step is not unique in general. Distance is then
found as in (i), except that one unit of distance is added for each 1-cycle
containing a ghost (surcharge rule). The manner of introducing ghosts is to
be chosen so as to minimize the resulting distance.

iii) Equal gene content with duplication. The adjacency graph is not
unique, because the duplicated genes can be matched in more than one
way. Once the matching is chosen, distance is found as in (i). The matching
should be chosen to minimize the resulting distance.

iv) Unequal gene content with duplication. The adjacency graph is not
unique because of the matching ambiguity. Once the matching is chosen, dis-
tance is found as in (ii). There are in general two ambiguities to be resolved,
one for the matching of duplicates and one for the assignment of ghosts. The
distance is to be minimized with respect to both ambiguities.

6.2 Questions to Be Answered

In this paper we have addressed only the proposed system of graphs and DCJ dis-
tance rules. We leave to later work the open questions associated with this system:

1) To find a formula analogous to that of Bergeron et al [7] which takes into
account paths terminating in unmatched gene ends as well as those termi-
nating in caps. We note here only that while odd paths terminating in caps
contribute negatively to the distance, odd paths terminating in unmatched
gene ends will contribute positively. In the language of the procedure of clos-
ing all paths, the reason for the difference is that an odd path terminating
in caps can be closed efficiently, by connecting the caps at the two ends of
the path, whereas an odd path terminating in unmatched gene ends cannot
be closed in this way because the two ends are dissimilar.

Sorting Genomes with Insertions, Deletions and Duplications by DCJ 183

2) To find an efficient algorithm for optimizing the choice of ghosts in cases (ii)
and (iv).

3) To find an efficient algorithm for resolving the matching ambiguity in cases
(iii) and (iv).

4) To give a rigorous proof that no case exists in which the surcharge rule does
not eliminate the free lunch problem.

5) To arrive at a good reason why nughs should be either allowed or disallowed.

6.3 Concluding Remarks

Efficient algorithms exist for transforming one genome to another in the case
of equal gene content. However when insertions, deletions and duplications are
introduced, the problem becomes more challenging. The extensions of the DCJ
paradigm in this paper allow us to consider genome rearrangements within this
more general framework.

Acknowledgements

SY thanks Nicholas Chiorazzi for support and Robert Warren, Martin Bader and
Michal Ozery-Flato for stimulating conversations during RECOMB CG 2007
that helped propel this inquiry.

References

1. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolutions caul-
dron: duplication, deletion, and rearrangement in the mouse and human genomes.
Proc. Natl Acad. Sci. USA 100, 11484–11489 (2003)

2. El-Mabrouk, N.: Sorting signed permutations by reversals and insertions/deletions
of contiguous segments. Journal of Discrete Algorithms 1(1), 105–122 (2001)

3. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and in-
sertions. Theoretical Computer Science 325(3), 347–360 (2004)

4. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

5. Feuk, L., Carson, A.R., Scherer, S.W.: Structural variation in the human genome.
Nat. Rev. Genet. Feb. 7(2), 85–97 (2006)

6. The Chimpanzee Sequencing and Analysis Consortium, Initial sequence of the
chimpanzee genome and comparison with the human genome. Nature 437, 69–87
(2005)

7. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

8. Bergeron communication
9. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. In:

Proc. 34th Ann. IEEE Symp Found. Comp. Sci., pp. 148–157. IEEE Press, Los
Alamitos (1993)

10. Friedberg, R., Darling, A.E., Yancopoulos, S.: Genome Rearrangement by the Dou-
ble Cut and Join Operation. In: Keith, J.M. (ed.) Bioinformatics, Data, Sequence
Analysis and Evolution, ch. 18. vol. I. Humana Press (2008)

A Fast and Exact Algorithm for the Median of

Three Problem—A Graph Decomposition
Approach

Andrew Wei Xu

Department of Mathematics and Statistics, University of Ottawa, Canada K1N 6N5

Abstract. In a previous paper, we have shown that adequate subgraphs
can be used to decompose multiple breakpoint graphs, achieving a dra-
matic speedup in solving the median problem. In this paper, focusing on
the median of three problem, we prove more important properties about
adequate subgraphs with rank 3 and discuss the algorithms inventorying
simple adequate subgraphs. After finding simple adequate subgraphs of
small sizes, we incorporate them into ASMedian, an algorithm to solve
the median of three problem. Results on simulated data show dramatic
speedup so that many instances can be solved very quickly, even ones
containing hundreds or thousands of genes.

1 Introduction

The median problem[3,7,8,6,2,1] for genomic rearrangement distances is NP-hard
[4,9]. Algorithms have been developed to find exact solutions for small instances
[4,6] and there are rapid heuristics of varying degrees of efficiency and accuracy
[2,1,5]. In a previous paper [10], with the aim of finding a decomposition method
to reduce the size of the problem, we introduced the notion of adequate subgraph
and showed how they lead to such a decomposition. By applying this method
recursively, the size of the problem is effectively reduced. In this paper, we focus
on the median of three problem, which is to find a genome q with smallest total
distance

∑
1≤i≤3 d(q, gi) for any given three genomes g1, g2, g3.

Because of its simple structure, we choose to work with DCJ distance[11]
d = n − c as most likely to yield non-trivial mathematical results, where n is
the number of genes in each genome (assuming that they have the same gene
content) and c is the number of cycles in the breakpoint graph. We require
genomes to consist of one or more circular chromosomes, but our results could
be extended to genomes with multiple linear chromosomes.

In Section 2 several related concepts are defined, such as breakpoint graph
and adequate subgraph. In Section 3 some important properties about adequate
subgraphs of rank 3 are proved. We discuss the problem of inventorying simple
adequate subgraphs in Section 4. Then in Section 5, we give an algorithm AS-
Median to solve the median problem. Results on simulated data are given and
discussed in Section 6.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 184–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Fast and Exact Algorithm for the Median of Three Problem 185

2 Graphs, Subgraphs and More

2.1 Breakpoint Graph

We construct the breakpoint graph of two genomes by representing each gene by
an ordered pair of vertices, adding coloured edges to represent the adjacencies
between two genes, red edges for one genome and black for the other.

In a genome, every gene has two adjacencies, one incident to each of its two
endpoints, since it appears exactly once in that genome. Then in the breakpoint
graph, every vertex is incident to one red edge and one black one. Thus the
breakpoint graph is a 2-regular graph which automatically decomposes into a
set of alternating-colour cycles.

The edges of one colour form a perfect matching of the breakpoint graph,
which we will simply refer to as a matching, unless otherwise specified. By the
red matching, we mean the matching consisting of all the red edges.

The size of the breakpoint graph is defined as half the number of vertices it
contains, which equals to the size of its matchings and the number of gens in
each genome.

2.2 Multiple Breakpoint Graph and Median Graph

The breakpoint graph extends naturally to a multiple breakpoint graph (MBG),
representing a set G of three or more genomes. The number of genomes1 NG ≥ 3
in G is called the rank of the MBG, which is also its edge chromatic number.
The colours assigned to the genomes are labeled by the integers from 1 to NG .
The size of an MBG or its subgraph is also defined as half the number of vertices
it contains.

For a candidate median genome, we use a different colour for its matching E,
namely colour 0. Adding E to the MBG results in the median graph. The set
of all possible candidate matchings is denoted by E .

The 0-i cycles in a median graph with matching E, numbering c(0, i) in all,
are the cycles where 0-edges and i edges alternate. Let cE =

∑
1≤i≤3 c(0, i). Then

cmax = max{cE : E ∈ E} is the maximum number of cycles that can be formed
from the MBG. Minimizing the total DCJ distance in the median problem is
equivalent to finding an optimal 0-matching E, i.e., with cE = cmax.

2.3 Subgraphs

Let V(G) and E(G) be the sets of vertices and edges of a regular graph G. A
proper subgraph H of G is one where V(H) = V(G) and E(H) = E(G)
do not both hold at the same time. An induced subgraph H of G is the
subgraph which satisfies the property that if x, y ∈ V(H) and (x, y) ∈ E(G),
then (x, y) ∈ E(H).

In this paper, we will focus on the induced proper subgraphs of MBGs, with
even numbers of vertices. Through this paper, the size of a subgraph is denoted

1 For the median of three problem, this number is just 3.

186 A.W. Xu

by m. For a proper induced subgraph H , E(H) is the set of all its perfect 0-
matchings E(H). The number of cycles determined by H and E(H) is cE(H)(H),
and cmax(H) is the maximum number of cycles that can be formed from H . A
0-matching E�(H) with cE�(H)(H) = cmax(H) is called an optimal partial 0-
matching, and E�(H) is the set of such 0-matchings.

2.4 Non-crossing 0-Matchings and Decomposers

For a subgraph H of an MBG G, a potential 0-edge would be H-crossing if it
connected a vertex in V(H) to a vertex in V(G)−V(H). A candidate matching
containing one or more H-crossing 0-edges is an H-crossing.

An MBG subgraph H is called a decomposer if for any MBG containing it,
there is an optimal matching that is not H-crossing. It is a strong decomposer
if for any MBG containing it, all the optimal matchings are not H-crossing.

2.5 Adequate and Strongly Adequate Subgraphs

A connected MBG subgraph H of size m is an adequate subgraph if cmax(H) ≥
1
2mNG ; it is strongly adequate if cmax(H) > 1

2mNG . For the median of three
problem, an adequate subgraph of rank 3 is a subgraph with cmax(H) ≥ 3m

2 and
a strongly adequate subgraph of rank 3 is one with cmax(H) > 3m

2 .
A (strongly) adequate subgraph H is simple if it does not contain another

(strongly) adequate subgraph as an induced subgraph; deleting any vertex from
H will destroy its adequacy.

Adequate subgraphs enable us to decompose the MBG into a set of smaller
ones, as in the next theorem.

Theorem 1. [10] Any adequate subgraph is a decomposer. Any strongly ade-
quate subgraph is a strong decomposer.

3 The Properties of Simple Adequate Subgraphs of
Rank 3

In this section, we prove other important properties about simple adequate sub-
graphs of rank 3. Multiple edges in MBGs are the simple adequate subgraphs of
size one, which are the only exceptions to many of the properties stated below.

3.1 More Properties about Adequate Subgraphs of Rank 3

Lemma 1. The vertices of simple adequate subgraphs of rank 3 have degrees
either 2 or 3.

Proof. Since the MBG for the median of three problem is 3-regular, the vertex
degrees of its induced subgraphs can only be 1, 2 or 3.

The lemma is true for parallel edges (the smallest simple adequate subgraphs),
where the vertex degrees are 2 or 3. For simple adequate subgraphs of size two or
more, we prove by contradiction that they can not contain vertices of degree 1.

A Fast and Exact Algorithm for the Median of Three Problem 187

Assume there is a simple adequate subgraph H of size m containing a vertex
x of degree 1. In one of the optimal 0-matchings of H , x is connected to vertex
y by a 0-edge e, and e appears only in one of the colour-alternating cycles. By
deleting edge e and vertices x, y, only that cycle is destroyed. Because of its
adequacy, the maximum number of cycles formed with H is at least 3m

2 . So for
the resultant subgraph F of size m − 1, the maximum number of cycles can be
formed is at least 3m

2 − 1 = 3(m−1)
2 + 1

2 > 3(m−1)
2 . Therefore F , as a subgraph

of H , is also an adequate subgraph, which contradicts the assumption that H is
simple.

So the vertex degrees in a simple adequate subgraph can only be 2 or 3. ��

Lemma 2. Except for multiple edges, the size of a simple adequate subgraph of
rank 3 is even.

Proof. Suppose there is an odd-sized simple adequate subgraph H of size 2k+1.
Because of its adequacy, the maximum number of cycles formed with H is at
least

⌈
3 (2k+1)

2

⌉
= 3k + 2. Since H is an proper subgraph, there exists a vertex

x with degree 2. Suppose 0-edge e is incident to x in one of H ’s optimal 0-
matchings. By deleting e and the corresponding vertices, two colour-alternating
cycles are destroyed. Then for the resultant subgraph F of size 2k, the maximum
number of cycles formed with F is at least 3k = 3

2 × 2k. Hence F , as a subgraph
of H , is also an adequate subgraph, which contradicts the simplicity of H . ��

Lemma 3. Except for multiple edges, the maximum number of cycles of a simple
adequate subgraph of rank 3 is exactly 3m

2 , where m is its size.

Proof. Because of Lemma 2, we only need to consider even-sized simple adequate
subgraphs. Suppose H is a simple adequate subgraph of size 2k, with which the
maximum number of cycles formed is at least 3k + 1. Then by deleting a 0-edge
connecting to a degree 2 vertex, the size of the subgraph decreases by 1 and the
number of cycles decreases by 2. So H contains another adequate subgraph of
size 2k − 1 whose maximum number of cycles is at least 3k − 1 =

⌈
3
2 (2k − 1)

⌉
,

which contradicts the simplicity assumption for H . ��

3.2 There Are Infinite Many Simple Adequate Subgraphs

In this subsection we show that there are infinitely many adequate subgraphs, by
proving the number of simple adequate subgraphs is infinite, which follows from
the infinite size of a special family of simple adequate subgraphs—the mirrored-
tree graphs.

Definition 1 An mirrored-tree graph: two identical 3-edge-coloured binary
trees with corresponding pairs of leaf vertices connected by simple edges. Being an
MBG subgraph, the size of an mirrored-tree graph is defined as half the number
of its vertices, which also is the number of vertices contained in each tree.

188 A.W. Xu

Proposition 1 1. Any binary tree containing more than one vertex must have
even size;

2. For a binary tree with m vertices, there are m
2 + 1 leaf vertices (with degree

1) and m
2 − 1 inner vertices (with degree 3).

3. The total number of edges is m − 1.

Proposition 2 For amirrored-tree graph of size m, there are 5m
2 −1 edges in total;

m
2 + 1 of them connect the two binary trees and 2m − 2 of them lie in the trees.

Definition 2 Double-Y end: A mirrored-tree graph of size 4, with one con-
necting edge missing, as illustrated by Figure 1(a). Being a part of an MBG
subgraph, it is connected to the remaining graph through the two vertices of de-
gree one.

a b c d

e f

x y

(a)

a b c d

e f

a′ b′ c′ d′

e′ f′

x y

(b)

a b c d

e f

a′ b′ c′ d′

e′ f′

x y

(c)

Fig. 1. (a) Illustration of a double-Y end and it is connected to the remaining sub-
graph only through vertices x and y; (b) shows a 0-matching not containing 0-edges
(a, b), (c, d), (e, f); (c) shows another 0-matching obtained by applying 3 DCJ opera-
tions to the 0-matching in (b), that does contain those three 0-edges and forms more
colour-alternating cycles

Lemma 4. If a double-Y end appears in an MBG subgraph H, then the 0-edges
(a, b), (c, d) and (e, f) connecting corresponding vertices of the two identical trees,
must exist in any optimal 0-matching of H, as illustrated by Figure 1(c).

Proof. In an optimal 0-matching of H , if any of the three 0-edges (a, b), (c, d)
and (e, f) appears, the other two 0-edges must also exist. Then only one case is
left to disprove—that none of these 0-edges appears in some optimal 0-matching,
as illustrated by Figure 1(b).

Figure 1(c) is obtained by three DCJ operations on the 0-edges of Figure 1(b),
creating 0-edges (a, b), (c, d) and (e, f). By comparison we can see that: a′, b′

are connected by a green-black alternating path and c′, d′ are connected by a
blue-black alternating path in both figures. So they are involved in the same
number of cycles in both figures.

Apart from these, Figure 1(b) contains another 6 paths, which can form at
most 6 colour-alternating cycles; Figure 1(c) contains 4 cycles as well as another
6 paths of 3 different colours which will form at least 3 cycles, summing up to a
total of 7 cycles or more. So Figure 1(c) forms more cycles than Figure 1(b).

A Fast and Exact Algorithm for the Median of Three Problem 189

For the cases where vertices a′, b′, c′, d′, e′, f ′ are incident to different set of
edges, the same result still holds.

Since 0-matchings of H containing 0-edges (a, b), (c, d) and (e, f) have more
cycles than 0-matchings not containing them, these three 0-edges must exist in
any optimal 0-matchings. ��
Theorem 2. With a mirrored-tree graph of size m, we can form a maximum
of 3m

2 colour alternating cycles, hence it is an adequate subgraph; Furthermore,
it does not contain any smaller adequate subgraphs, so it is a simple adequate
subgraph.

Proof. We first prove that there is a 0-matching of the mirrored-tree graph, form-
ing 3m

2 colour alternating cycles. This is just the set of 0-edges connecting the
corresponding vertices of the two trees. With this 0-matching, each non-0 edge
connecting two trees makes a cycle by itself; and the edges on the tree form cy-
cles of size 2 with the corresponding edges on the other tree. From Proposition 2,
there are m

2 + 1 edges connecting trees and 2m− 2 edges on the trees, the total
number of cycles is 3m

2 .
Next we show that is the only optimal 0-matching. For any binary tree, since

the number of leaf vertices is larger than the number of inner vertices by 2,
there is always an inner vertex being connected to two leaf vertices. In the
corresponding mirrored-tree graph, this gives a double-Y end.

For a mirrored-tree graph H , we add two 0-edges parallel to the connecting
edges of its double-Y end as 0-edges (a, b) and (c, d) in Figure 1(c). Then by
shrinking them, H becomes a quasi mirrored-tree graph2 of smaller size, con-
taining double-Y ends or quasi double-Y ends3. By applying this procedure of
adding and shrinking 0-edges to the (quasi) double-Y ends recursively, H finally
becomes a three-parallel edge. Since in each step the new added 0-edges must
appear in all optimal 0-matchings, the resultant perfect 0-matching is the only
optimal 0-matching of H .

The symmetrical structure of mirrored-tree graphs leads to colour-alternating
cycles of smallest sizes—1 and 2 only. In detecting whether a mirrored-tree graph
H contains any smaller adequate subgraphs, it is sufficient to only consider its
subgraphs with symmetrical structures. Using reasoning similar to the above
paragraphs, it can be shown that the optimal 0-matchings for these symmetrical
subgraphs of H are the subsets of the 0-edges in the optimal 0-matching of H .
However none of these symmetrical subgraphs of H can form cycles of 3

2 times
their sizes. So the mirrored-tree graphs are simple adequate subgraphs. ��
Theorem 3. There are infinitely many simple adequate subgraphs.

Proof. Since there are binary trees of arbitrary large size, which give mirrored-
tree graphs with arbitrary large (even) size. Also because mirrored-tree graphs
are simple adequate subgraphs, there exist simple adequate subgraphs with ar-
bitrary large (even) size. ��
2 In which, there may be multiple edges connecting the two identical trees.
3 The ones whose connecting edges might be multiple edges. Obviously the conclusion

in Lemma 4 also applies to quasi double-Y ends.

190 A.W. Xu

4 Inventorying Simple Adequate Subgraphs

4.1 It Is Practical to Use Simple Adequate Subgraphs of Small
Sizes

Before using the adequate subgraphs to reduce the search space for finding an
optimal 0-matching, we need to inventory the adequate subgraphs. Theorem 3
states that there are infinitely many simple adequate subgraphs, hence infinitely
many adequate subgraphs, so it is impossible to inventory all of them and use
them to decompose the median problems. However, it is practical to work on
simple adequate subgraphs of small sizes, as justified by the following:

1. There are much fewer simple adequate subgraphs. And many non-simple
adequate subgraphs can be decomposed into several simple adequate sub-
graphs embedded in each other. Hence many non-simple ones can be detected
through the constituent simple ones.

2. The algorithms to inventory simple adequate subgraphs for a given size re-
quire more than exponential time in their size.

3. The total number of simple adequate subgraphs increases dramatically as
the size increases. The complexity of the algorithm to detect the existence
of a given simple adequate subgraph also increases accordingly. Combining
these two factors, we conclude that it is prohibitively expensive to detect the
existence of simple adequate subgraphs of large sizes.

4. Simple adequate subgraphs of small sizes exist with much higher probability
than subgraphs of greater size on random MBGs. The details will be given
in the full version of this paper.

4.2 Algorithms to Inventory Simple Adequate Subgraphs

To enumerate the simple adequate subgraphs, we need to search among all the
MBG subgraphs, which consist of (perfect or non-perfect) matchings of three
colours. In order to count the number of cycles, the perfect 0-matchings must
also be enumerated. So the algorithms need to work on graphs consisting of 4
matchings, hence the problem is computationally costly.

Our simple adequate subgraph inventorying algorithm uses a depth-first search
method. The graph grows by adding an edge at each step. It is backtracked when-
ever the current graph contains a smaller simple adequate subgraph and then re-
strained on another path to grow the graph until all subgraphs have been searched.

To speed up the algorithm, we adopt several useful methods and techniques:

1. Only inventory simple adequate subgraphs of even sizes, as a result of
Lemma 2.

2. Fix the 0-matching. Any median subgraph is isomorphic to (2m)!
2m m! − 1 other

median subgraphs by permuting the 0-edges.
3. Only allow the graphs whose number of 1-edges is no less than the number

of 2-edges and the number of 2-edges is no less than the number of 3-edges,
because of the isomorphism associated with the permutation of colours.

4. Every vertex must be incident to 2 or 3 non-0-edges, because of Lemma 1.

A Fast and Exact Algorithm for the Median of Three Problem 191

Fig. 2. Simple adequate subgraphs of size 1, 2 and 4 for MBGs on three genomes

4.3 Simple Adequate Subgraph Enumerated

In Figure 2, the simple adequate subgraphs of size 1, 2 and 4 are listed. Each
subgraph represent a class of subgraphs isomorphic under the permutations of
vertices and colours.4

5 Solving the Median of Three Problem by Recursively
Detecting Simple Adequate Subgraphs

Our algorithm using adequate subgraphs to decompose the median problems is
called ASMedian. It adopts a branch-and-bound method to find an optimal
0-matching for any given MBG. At any intermediate step during the branch-
and-bound search, an intermediate configuration (IC for short) is constructed,
containing a partial 0-matching and an intermediate MBG (iMBG for short)
resulted by a process of edge-shrinking [10] of that partial 0-matching from the
original MBG. The algorithm keeps a list of unexamined ICs L, initially just
consisting of the original MBG.

At each step, from L an unexamined IC with the largest upper bound is
selected to examine. According to whether an inventoried simple adequate sub-
graph exists in that iMBG and what simple adequate subgraph it is, a number of
new ICs are generated, containing smaller and non-empty iMBGs and expanded
partial 0-matchings. Then we update U the largest upper bound of all unexam-
ined ICs and c∗ the largest cycle number encountered so far. We prune the ICs
whose upper bounds are no larger than c∗. The algorithm stops when c∗ ≥ U
or no unexamined ICs remain. Then c∗ is the maximum cycle number for the
original MBG, and the corresponding 0-matching is an optimal 0-matching.

4 Strictly speaking, Figures (a) and (f) are not proper subgraphs of a connected MBG.

192 A.W. Xu

Algorithm 1. ASMedian
Input: three genomes containing any number of circular chromosomes
Output: the median genome and the maximum number of cycles c

construct the MBG, assign its upper bound u to U and its lower bound to c∗1

and push it into the unexamined list L;

while U > c∗ and L is not empty do2

pop out an IC with u = U from L;3

if an adequate subgraph H is found in the iMBG of that IC then4

set the major set as the one of H ;5

else6

select the vertex with smallest label and set the major set as the set7

containing all 0-edges incident to that vertex;

generate a set of new ICs with their partial 0-matchings are expanded to8

include a 0-matching in the major set and their iMBGs as the resultant
graphs of shrinking these partial 0-matchings;

update U and c∗;9

if c∗ gets updated then Remove all the ICs with u ≤ c∗ in L;10

push the new generated ICs with u > c∗ into L;11

// the maximum cycle number has been found;

set c as c∗ and construct the median genome from the optimal 0-matching12

obtained;
return c and the median genome;13

5.1 Examining the Intermediate MBGs

Definition 3 The inquiry set is the set of simple adequate subgraphs (of small
sizes) for which the ASMedian algorithm looks on the intermediate MBGs. For
a specific algorithm, the inquiry set is given as a parameter.

The iMBG of the selected IC is examined to see the existence of any simple
adequate subgraph in the inquiry set. If one of such subgraphs H exists, then
we know there is an optimal 0-matchings of iMBG which is non-H-crossing.
This 0-matching can be divided into two parts: a 0-matching of H and a partial
0-matching of the remaining intermediate MBG.

A major set of H is the minimal set of 0-matchings of H , which guarantees
that at least one of them must appear in an optimal 0-matchings of the MBG,
without the knowledge of the remaining part of the MBG (as will be shown else
where). The size of the major set is denoted by µ. Since the inquiry set is given
in advance, the major sets for the simple adequate subgraphs are also known in
advance. Then according to this major set, µ new ICs will be generated with
smaller iMBGs, each resulting from the shrinking of a 0-matching of H in the
major set from the iMBG of the currently selected IC.

When no simple adequate subgraph in the inquiry set exists, the vertex v with
the smallest remaining label is selected. The nominal major set of size 2ñ − 1 is
constructed, where ñ is the size of the iMBG — just the set of 0-edges incident

A Fast and Exact Algorithm for the Median of Three Problem 193

to v (here each partial 0-matching is just a 0-edge). Then 2ñ − 1 new ICs are
created accordingly.

If the inquiry set is chosen as all simple adequate subgraphs of sizes 1, 2 and
4, then the sizes of their major sets are just one, except for one case where it
is 2. It can be seen that whenever a simple adequate subgraph is detected, the
search space is roughly reduced by a factor of ñ, ñ2 or ñ4.

5.2 The Lower Bound and the Upper Bound

For each intermediate configuration, the ASMedian algorithm calculates its up-
per bound and prunes it if the value is no larger than c∗—the maximum number
of cycles encountered so far.

Because of the search schema we use (see next subsection), it takes a while for
the algorithm to reach any perfect 0-matching. Due to the fact that the number
of cycles formed by partial 0-matchings are small, to calculate c∗ from them
will make the pruning procedure very inefficient. Instead, for each intermediate
configuration, a tight lower bound is calculated and c∗ takes the maximum of
these lower bounds and the encountered cycle numbers.

Since the DCJ distance is a metric measure, for any median of three problem,
there is an associated lower bound for the total distance. Assume the three known
genomes are labeled as 1, 2, 3, and d1,2, d1,3, d2,3 denote the pairwise distances
and c1,2, c1,3, c2,3 denote the cycle numbers between any two pairs. The lower
bound for the total distance is d ≥ d1,2+d1,3+d2,3

2 . Because di,j = n − ci,j , then
we get an upper bound for the total cycle number,

c ≤ 3n

2
+

c1,2 + c1,3 + c2,3

2
. (1)

To find a lower bound for the total cycle number, we can set the 0-matching
to any of the matchings representing the three known genomes and take largest
total cycle number of the three as the lower bound, so that

c ≥ c1,2 + c1,3 + c2,3 − min{c1,2, c1,3, c2,3}. (2)

For any IC, by adding c̃, the number of cycles formed by its partial 0-matching,
to the lower bound and upper bound of its intermediate MBG, we get the upper
bound and lower bound of this IC, denoted by u and l correspondingly.

u = c̃ +
3ñ

2
+

c̃1,2 + c̃1,3 + c̃2,3

2
(3)

l = c̃ + c̃1,2 + c̃1,3 + c̃2,3 − min{c̃1,2, c̃1,3, c̃2,3}. (4)

The IC and all ICs derived from it, are referred as the parent IC and the
child ICs. A non-increasing property holds between the upper bounds of the
parent IC and the child ICs.

Lemma 5. The upper bounds of the child ICs are never larger than the upper
bound of their parent IC.

194 A.W. Xu

Proof. Suppose a child IC is obtained from the parent IC by adding a 0-edge e.
We first inspect the possible effects on c̃ and c̃1,2 of adding e to the iMBG of the
parent IC.

a If e connects two 1-2 cycles, then the two cycles will be merged into one.
Then c̃ remains the same and c̃1,2 decreases by 1;

b if e parallels a 1-edge (or a 2-edge), then one 0-1 cycle of size 1 is formed and
the 1-2 cycle containing that edge becomes a shorter one. So that c̃ increases
by 1 and c̃1,2 remains the same;

c if e connects two vertices of the same 1-2 cycle, not paralleling any edges,
then this 1-2 cycle may be split into two or remain with a smaller size.
Therefore c̃ remains the same and c̃1,2 increases by 0 or 1.

Since the size of the iMBG in the child IC decreases by 1, 3ñ
2 decreases by 3

2 .
As long as c̃ + c̃1,2+c̃1,3+c̃2,3

2 does not increase more than 3
2 , u never increases.

1 If e does not parallel any edge, then c̃ remains the same, and each of
c̃1,2, c̃1,3, c̃2,3 increases at most by 1. So u does not increase;

2 if e parallels one edge, c̃ increases by 1 and only one of c̃1,2, c̃1,3, c̃2,3 increases
at most by 1. So u does not increase;

3 if e parallels two edges, c̃ increases by 2 and the cycle formed by the parallel
edges is destroyed and the other two terms of c̃1,2, c̃1,3, c̃2,3 remain the same.
So u does not change;

4 e parallels three edges, c̃ increases by 3 and the three cycles formed by the
parallel edges are destroyed. So u remains the same.

So the upper bound of the child ICs are never larger than the upper bound of
their parent IC. ��

The algorithm maintains an overall upper bound U which is the maximum upper
bound of all unexamined ICs. Another global variable, as mentioned before, is
the largest total cycle number or lower bound c∗ found so far. Obviously the
maximum total cycle number c of the original MBG lies between c∗ and U .

5.3 The Optimistic Search Schema

Our algorithm is neither a strict depth-first nor a strict breadth-first search
schema, but follows an “optimistic” search strategy . From the list of all un-
examined ICs, we select the one with the largest upper bound. The intuition
behind this is, the ICs with larger upper bounds are more likely to lead to per-
fect 0-matchings with larger cycle numbers. Beside the intuitive aspect, we can
prove that this optimistic search schema has a smallest search space in terms of
the number of ICs it examines.

Theorem 4. The set of ICs the optimistic search schema examines includes
all ICs with u > c, plus a subset of ICs with u = c. Further more, since the
search space of every branch-and-bound method includes all ICs with u > c, the
optimistic search schema has the smallest search space possible.

A Fast and Exact Algorithm for the Median of Three Problem 195

Proof. Obviously every IC with u > c should be examined by the algorithm,
otherwise, the possibility of having a maximum total cycle number with c+1 or
more can not be eliminated.

Because of Lemma 5, for any IC with u ≥ c, all the ICs lying on the path
from the original of the search to this IC have their upper bounds larger than
or equal to c. So the algorithm with optimistic search schema never needs to
examine any IC with u < c to find the ones with u ≥ c, i.e., this algorithm finds
all ICs with u ≥ c without examining any ones with smaller upper bounds. By
the time that the ones with u ≥ c have been examined, an optimal 0-matching
with c cycles has been found and the algorithm stops. And the search space for
the optimistic schema includes all the ICs with u > c and a subset of the ICs
with u = c.

Hence the optimistic search schema has the smallest search space possible. ��
The exact algorithm in [4] consists of cascaded runs of depth-first branch-and-
bound search, with the first run seeking a solution whose cycle number is equal
to the upper bound of the original MBG and the subsequent runs seeking solu-
tions with one cycle less than the previous ones, until a solution is found. The
cascaded branch-band-bound algorithm and our optimistic branch-and-bound al-
gorithm are similar in terms of the search spaces. The intermediate configurations
may be examined more than once in the former algorithm. In our optimistic al-
gorithm, some intermediate configurations with smaller upper bounds need to be
stored temporarily. Although storing huge amount of these intermediate configu-
rations can be a challenge to physical memories or even hard disks, the problem
is dramatically improved with the adequate subgraph decomposition method and
it can be further improved by finding better pruning methods, such as finding a
better lower bound or running a heuristic before the main exact algorithm starts.

6 Results on Simulated Data

ASMedian algorithm is implemented in Java and runs on a MacBook, using only
one 2.16GHz CPU. Sets of data are simulated with varying parameters n and
π = ρ/n, where n is the number of gene in each genome and ρ is the number of
random reversals applied to the ancestor I = 1, . . . , n independently to derive
each of the three different genomes. n ranges among 10, 20, 30, 40, 50, 60, 80,
100, 200, 300, 500, 1000, 2000, 5000 and π starts from 0.1 and increases by
intervals of 0.1. For each data set, 10 instances are generated.

6.1 The Running Time for Simulated Data Sets with Varying n and
π = ρ/n

Table 1 shows the average running time in seconds for all data sets whose 10
instances can all be solved within one hour or the number of solved instances
in parenthesis for the remaining data sets. It can be seen that relatively large
instances can be solved if ρ/n remains at 0.3 or less. It also shows that for small
n, the median is easy to find even if ρ/n is large enough to effectively scramble
the genomes.

196 A.W. Xu

Table 1. For each data set, if its ten instances all finish in 1 hour, then their average
running time is shown in seconds; otherwise the number of finished instances is shown
with parenthesis

n ρ/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 4 10−4 1 10−4 2 10−4 8 10−4 4 10−4 2 10−3 2 10−3 8 10−4 4 10−4 5 10−4

20 2 10−4 2 10−4 3 10−4 6 10−4 9 10−4 6 10−4 2 10−2 7 10−3 2 10−2 5 10−3

30 2 10−3 2 10−3 3 10−4 7 10−4 5 10−3 3 10−2 5 10−2 1 10−1 4 10−1 1
40 1 10−4 2 10−4 3 10−4 6 10−4 4 10−2 1 6 6 101 6 101 5 101

50 0 4 10−4 5 10−4 2 10−3 7 10−2 7 101 (9) (7) (7)
60 2 10−3 1 10−3 5 10−3 3 10−2 5 101 (7)
80 3 10−4 4 10−4 7 10−4 8 10−2 (9)
100 3 10−4 7 10−4 1 10−3 7 101 (1)
200 7 10−3 1 10−2 3 10−2 (0)
300 5 10−3 5 10−3 2 10−2 (0)
500 2 10−2 2 10−2 1 10−1 (0)
1000 9 10−2 7 10−2 8 101 (0)
2000 9 10−2 3 10−1 (3)
5000 2 2 (0)

Table 2. Speedup due to adequate subgraph (AS) discovery. Three genomes are gener-
ated from the identity genome with n = 100 by 40 random reversals. Time is measured
in seconds. Runs were halted after 10 hours. AS1, AS2, AS4, AS0 are the numbers
of edges in the solution median constructed consequent to the detection of adequate
subgraphs of sizes 1, 2, 4 and at steps where no adequate subgraphs were found,
respectively.

speedup run time number of edges
run factor with AS no AS AS1 AS2 AS4 AS0

1 41,407 4.5× 10−2 1.9× 103 53 39 8 0
2 85,702 3.0× 10−2 2.9× 103 53 34 12 1
3 2,542 5.4× 100 1.4× 104 56 26 16 2
4 16,588 3.9× 10−2 6.5× 102 58 42 0 0
5 > 106 5.9× 102 stopped 52 41 4 3
6 199,076 6.0× 10−3 1.2× 103 56 44 0 0
7 6,991 2.9× 10−1 2.1× 103 54 33 12 1
8 > 106 4.2× 101 stopped 57 38 0 5
9 1,734 8.7× 100 1.5× 104 65 22 8 5
10 855 2.1× 100 1.8× 103 52 38 8 2

6.2 The Effect of Adequate Subgraph Discovery on Speed-Up

Table 2 shows how the occurrence of adequate subgraphs can dramatically speed
up the solution to the median problem, generally from more than a half an hour
to a fraction of a second.

A Fast and Exact Algorithm for the Median of Three Problem 197

7 Conclusion

In this paper, several important properties about the adequate subgraphs of
rank 3 are proved. We show that there are infinitely many adequate subgraphs,
hence it is not possible to list all these subgraphs. By showing that the simple
adequate subgraphs of small sizes have the largest occurrence probability on
random MBGs and the algorithms of detecting them are simple and fast, it is
practical and efficient to solve the median of three problem by only using simple
adequate subgraphs of small sizes. This is confirmed by the dramatic speedup
shown in the results on simulated data. Whether it is worth exploring simple
adequate subgraphs of size 6 is not clear. It depends on many factors, such as
the size of the problem (number of genes genomes contained) and the algorithms
for detecting subgraphs and their implementations.

References

1. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. 4, 69–74
(2008)

2. Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in
the ancestral species. Genome Res. 12, 26–36 (2002)

3. Bryant, D.: The complexity of the breakpoint median problem. TR CRM-2579.
Centre de recherches mathématiques, Université de Montréal (1998)

4. Caprara, A.: The reversal median problem. Informs J. Comput. 15, 93–113 (2003)
5. Lenne, R., Solnon, C., Stützle, T., Tannier, E., Birattari, M.: Reactive stochastic

local search algorithms for the genomic median problem. In: van Hemert, J., Cotta,
C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)

6. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform break-
point medians in phylogeny reconstruction from gene-order data. In: Guigó, R.,
Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452. Springer, Heidelberg (2002)

7. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. the
Electronic Col loquium of Computational Complexity Report, number TR98-071
(1998)

8. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. J. Comput. Biol. 5, 555–570 (1998)

9. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251.
Springer, Heidelberg (2008)

10. Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid
exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.)
WABI 2008. LNCS (LNBI), vol. 5251. Springer, Heidelberg (2008)

11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinform. 21, 3340–3346 (2005)

A Phylogenetic Approach to Genetic Map

Refinement

Denis Bertrand1, Mathieu Blanchette2, and Nadia El-Mabrouk3

1 DIRO, Université de Montréal, H3C 3J7, Canada
bertrden@iro.umontreal.ca

2 McGill Centre for Bioinformatics, McGill University, H3A 2B4, Canada
blanchem@mcb.mcgill.ca

3 DIRO
mabrouk@iro.umontreal.ca

Abstract. Following various genetic mapping techniques conducted on
different segregating populations, one or more genetic maps are obtained
for a given species. However, recombination analyses and other meth-
ods for gene mapping often fail to resolve the ordering of some pairs
of neighboring markers, thereby leading to sets of markers ambiguously
mapped to the same position. Each individual map is thus a partial or-
der defined on the set of markers, and can be represented as a Directed
Acyclic Graph (DAG). In this paper, given a phylogenetic tree with a
set of DAGs labeling each leaf (species), the goal is to infer, at each
leaf, a single combined DAG that is as resolved as possible, considering
the complementary information provided by individual maps, and the
phylogenetic information provided by the species tree. After combining
the individual maps of a leaf into a single DAG, we order incomparable
markers by using two successive heuristics for minimizing two distances
on the species tree: the breakpoint distance, and the Kemeny distance.
We apply our algorithms to the plant species represented in the Gramene
database, and we evaluate the simplified maps we obtained.

1 Introduction

Similarly to a road map indicating landmarks along a highway, a genetic map
indicates the position and approximate genetic distances between markers along
chromosomes. Genetic mapping using DNA markers is a key step towards the
discovery of regions within genomes containing genes associated with particular
quantitative traits (QTLs). This is particularly important in crops and other
grasses, where the localization of markers linked to genes playing major roles in
traits such as yield, quality, and disease resistance, can be harnessed for agricul-
tural purposes [3].

In order to fulfill their purpose of locating QTLs as precisely as possible, ideal
genetic maps should involve as many markers as possible, evenly distributed over
the chromosomes, and provide precise orders and distances between markers. In
reality, recombination analysis, physical imaging and the other methods used for

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 198–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Phylogenetic Approach to Genetic Map Refinement 199

genetic mapping only give an approximate evaluation of genetic distances be-
tween markers, and often fail to order some pairs of neighboring markers, lead-
ing to partial orders, with sets of incomparable markers, that is, set of markers
affected to the same locus. Moreover, to identify a specific marker locus, one
requires polymorphisms at that locus in the considered population. As different
populations do not contain polymorphisms for all the desired loci, the different
genetic maps obtained for the same species on the basis of different segregat-
ing populations generally contain different markers. However, as long as some
common markers are used, individual maps can be combined into a single one.

Various approaches have been considered to integrate different maps of a single
species. As genetic distances are poorly comparable between maps, a standard
approach has been to reduce each map to the underlying partial order between
markers. This simplification allows representing a map as a Directed Acyclic
Graph (DAG), where nodes correspond to markers, and paths between nodes to
the ordering information [18]. Combining DAGs from different maps may lead to
cycles, corresponding to conflicts (two markers A and B that are ordered A → B
in one map, and B → A in another). Different approaches have been considered
to cope with such conflicts. In [18], a DAG is recovered by simply “condensing”
the subgraph corresponding to a maximum subset of “conflicting” vertices into a
single vertex. In [6,7] the authors find a median by removing a minimum number
of conflicts.

In contrast to the work that has been done for combining information of dif-
ferent maps of a single species, no similar effort has been expended to improve
the markers’ partial order information on one species on the basis of the genetic
information of related species. In this context, the only comparative genomic
study for genetic mapping is the one that we have conducted [1] for lineariz-
ing a DAG representing the map of a given species, with respect to a related
species for which a total order of markers is known. In the context of computing
the rearrangement distance between two maps, a more general study has been
conducted by Zheng et. al [19] for inferring the minimal sequence of reversals
transforming one DAG into another. Another study by the same authors [20]
has considered the problem of reconstructing synthenic blocks between two gene
maps by eliminating as few noisy markers as possible.

In this paper, starting from a species tree and a set of DAGs (individual maps)
labeling each leaf (species), the goal is to infer, at each leaf, a single combined
DAG that is as resolved as possible, considering the complementary informa-
tion provided by individual maps, and the phylogenetic information provided
by the species tree. Ideally (assuming sufficient complementary information be-
tween maps and sufficient phylogenetic information), a complete linearization
of the DAGs is desirable. However, as ideal situations are rarely encountered,
we will consider the more restricted, but more biologically relevant problem, of
integrating maps and reducing pairs of incomparable and conflicting markers of
each DAG, given the phylogenetic signal.

We proceed as follows. After combining the individual maps of a leaf into
a single DAG by using a method similar to that of Yap et al. [18], we resolve

200 D. Bertrand, M. Blanchette, and N. El-Mabrouk

incomparable pairs of markers by using two successive heuristics for minimizing
two distances on the species tree: the breakpoint distance, and the Kemeny
distance [10] defined as the total number of pairwise ordering conflicts over the
branches of the tree.

The second heuristic is based on the previous work of Ma et.al [11] for re-
constructing ancestral gene orders. The developed algorithm is guaranteed to
identify a most parsimonious scenario for the history of each incomparable pair
of markers, although it provides no guarantee as to the optimality of the global
solution. The paper is organized as follows. We introduce all concepts and nota-
tions in Section 2. We then describe our methodology in Section 3, and present
our two heuristics in Section 4. In Section 5, we apply our method to the Gramene
database [8] and evaluate the simplified maps we obtain.

2 Gene Order Data and Representation as Graphs

Experimental methods used for genetic mapping give rise to individual maps,
generally represented by lines upon which are placed individual loci (Figure 1,
Map1 and Map2). Each locus represents the position of a specific marker that
might appear at several positions in the genome. However, in this paper, we

C

M

L

M

G

M

DAG 2:

DG12:

DAG 1:

DAG12:

C, D

B

A

E

F

G

H, I

A

K

D

G

L

E

J

Map 2Map 1

M, N, O

B D, E, F, G, L

B

D

E F

N

J

D E N

B

D

C

E F J

C

L

G

N

J

H

I

IH

I

H

A

GAK

K A

K A

O

O

O

H

I

I

H

Fig. 1. Modeling maps as Directed Acyclic Graphs (DAGs). Left: maps as they are
represented in a gene map database such as Gramene. Map1 and Map2 correspond to
two mapping studies of the same chromosome. Letters correspond to markers placed
at positions proportional to their distance from each other. Common markers between
the two maps are linked. Right, from up to bottom: DAG representing Map1; DAG
representing Map2; Directed Graph (DG) corresponding to the union of DAG1 and
DAG2; DAG corresponding to map integration, after simplifying the strongly connected
components.

A Phylogenetic Approach to Genetic Map Refinement 201

assume that each marker exhibits a single polymorphism along the genome,
allowing to treat the concept of marker and locus synonymously. In other words,
marker duplications are not allowed.

Modeling a map as a DAG. Following the notations of [18], maps may be repre-
sented as Directed Acyclic Graphs (DAGs), where each marker is represented by
a vertex, and each pair of adjacent markers are connected by an edge (Figure 1,
DAG1 and DAG2). Often due to the lack of recombination between two loci, a
number of different markers may appear at the same position on the map (for
example, markers C and D in Map1). It follows that a single marker may be
connected to a set of other markers.

Such DAGs represent partial orders between markers. Two markers A and
B are comparable iff there is a directed path from A to B (in which case we
write A < B) or from B to A (we write A > B), and incomparable otherwise. A
conflict between two maps is a pair of markers A and B that are ordered A < B
on one map, and A > B on the other. The Kemeny distance [10] between two
DAGs (or partial orders) is the number of conflicts between them. For example,
in Map1 (Figure 1), (A, C) is a pair of comparable markers (A < C, or similarly
C > A) and (C, D) is a pair of incomparable markers. Moreover, the Kemeny
distance between Map1 and Map2 is 20 since markers D, E, F , G and L are in
conflict with each other.

Map integration. Different studies on the same species conducted on different
populations give rise to different maps involving different markers. As long as
some identical markers are shared between studies, maps can be merged to a
Directed Graph (DG) with a single connected component, by performing the
union of the individual maps [18]. More precisely, let D1,D2, . . . ,Dn be n DAGs
corresponding to n maps, and M be the set of markers represented in at least
one Di, for 1 ≤ i ≤ n. Then the union DG is the directed graph G defined as
follows: a vertex is in G iff it is in at least one Di, and an edge is in G iff it is in
at least one Di, for 1 ≤ i ≤ n (Figure 1, DG12).

Due to conflicts between maps, such union DG may contain cycles (for exam-
ple, (D, L, E, F, G) is a cycle in DG12). Markers involved in such cycles cannot
be ordered relative to each other without yielding a contradiction. Two main
approaches have been used in the literature to cope with cycles.

1. A Strongly Connected Component (SCC) of a DG G refers to a maximum
subset V of vertices of G such that, for each (v1, v2) ∈ V2, there is a directed
path in G from v1 to v2 and from v2 to v1. For example, {D, E, F, G, L}
is an SCC in DG12. A number of very efficient algorithms are able to find
the SCCs in a graph [12,16]. This yields to the possibility of simplifying a
DG to a DAG by “condensing” the subgraph that comprises an SCC into a
single vertex (DAG12 in Figure 1). Markers belonging to such a vertex are
considered pairwise incomparable.

2. Based on the hypothesis that conflicts are due to mapping errors, Jackson
et.al [7] considered the problem of inferring a consensus map leading to a
minimum number of such errors. Their method is based on finding a median

202 D. Bertrand, M. Blanchette, and N. El-Mabrouk

order for the Kemeny distance, which is an NP-hard problem [17]. They
proved that inferring a median order according to this distance is equivalent
to finding an acyclic subgraph of minimum weight in a weighted directed
graph (i.e. a minimum feedback arc set), and designed an exact algorithm
and a heuristic to solve it.

3 Methodology

Given a phylogenetic tree T for a set of n species and a set of DAGs (set of
individual maps) at each leaf of T , our goal is to produce a single DAG at
each leaf of T that is as resolved as possible considering the shared information
between maps and the phylogenetic information provided by T .

In the rest of this paper, resolving a pair of incomparable markers will refer
to fixing an order between the two markers, and simplifying a DAG will refer to
resolving a number of pairs of incomparable markers in the DAG.

3.1 Integrating Maps

We integrate the set of DAGs labeling each leaf of T into a single DAG as
follows. We first construct the DAG’s union DG as described in Section 2. Then,
in contrast to [7], we do not try to solve conflicts of the union DG, that is the
pairs of markers involved in a cycle of the DG, at this stage. Rather, conflicts
are reduced to SCCs, as in [18], and resolving such SCCs is delayed to the next
phase considering the phylogenetic information of the species tree.

3.2 Marker Content of Internal Nodes

We would like to account for the phylogenetic information represented by the
species tree T . Considering a most parsimonious model of evolution, the goal
is to infer marker orders that minimize a given distance on T . Preliminary to
computing any distance on T is the assignment of marker content at each internal
node. We will proceed as follows, assuming a model with no convergent evolution.
Let M be a marker, L be the set of leaves that contain the marker M , and v be
the node of T representing the least common ancestor of L. Then, we assign M
to each node belonging to a path from v to an element of L.

3.3 Minimizing an Evolutionary Distance

In contrast to gene order data, maps do not provide information on adjacencies,
but rather on relative orders between markers: an edge A → B in a DAG does not
mean that A is adjacent to B, but rather that A precedes B on the chromosome.
Indeed another DAG for the same species may contain an edge A → C, leading
to two possible total orders for the three markers: A B C or A C B. Therefore,
a classical gene order distance such as the inversion distance, or its reduction
to the breakpoint distance, is not directly applicable to such data. In this case,
a more natural distance is the number of conflicts between two maps, that is
the Kemeny distance. In the case of a species tree, the Kemeny distance can be
generalized as follows:

A Phylogenetic Approach to Genetic Map Refinement 203

Definition 1. Given a species tree T with a total order assigned to each node,
the Kemeny distance on T is the sum of Kemeny distances of each pair of adja-
cent nodes (nodes connected by an edge of T).

For the purpose of introducing our optimization problems, we recall the classical
notion of a linear extension.

Definition 2. Let D be a DAG on a set M of markers. A linear extension of
D is a total order O of M such that if A < B in D then A < B in O.

Now, consider the following optimization problems, where “Given” should be
replaced by either Kemeny, Breakpoint or Inversion:

Minimum-“Given” Linearization Problem

Given: A species tree T with a DAG at each leaf and a set of markers at each
internal node;

Find: A total order at each internal node of T , and at each leaf of T , a linear
extension of its DAG, minimizing the “Given” distance on T .

Notice that this problem is proved to be NP-hard for the breakpoint distance [13],
for the inversion distance [2], and for the Kemeny distance [17].

The Minimum-Kemeny Linearization Problem is the one most directly appli-
cable to partial orders. This problem is equivalent to the Minimum-Breakpoint
Linearization Problem and the Minimum-Inversion Linearization Problem in the
case of a marker set restricted to the same two markers M = {A, B} at each node
and leaf of T . Moreover, it is equivalent to the Minimum-Inversion Linearization
Problem with inversions restricted to segments of size 2 [14]. However, in the
general case, a solution to the Minimum-Kemeny Linearization Problem is not
guaranteed to minimize the inversion or breakpoint distance. Using this distance
only allows combining the information obtained on closely related species, in case
of no large genome rearrangements.

Simplifying DAGs: Following the above observations, we will present, in the next
section, two algorithms aiming to simplify each leaf’s DAG as follows:

1. Simplify the DAG based on the breakpoint distance. Although the resulting
DAG D is not a total order, the developed algorithm can be seen as a heuristic
for the Minimum-Breakpoint Linearization Problem, as any linear extension
of D can be seen as a (possibly suboptimal) solution to this problem;

2. Simplify the resulting DAG based on the Kemeny distance. Similarly to
the above step, the developed algorithm can be seen as a heuristic for the
Minimum-Kemeny Linearization Problem.

4 Algorithms

Our two heuristics are inspired from the general methodology used by Ma et.
al [11] for inferring ancestral gene orders, which in turn is inspired by the Fitch
algorithm for substitution parsimony [4].

204 D. Bertrand, M. Blanchette, and N. El-Mabrouk

4.1 A Heuristic for the Minimum-Kemeny Linearization Problem

Considering the assumption of no convergent mutation, the Fitch algorithm in-
fers the DNA sequences at the internal nodes of a phylogenetic tree based on the
DNA sequences at the leaves [4]. The sequences are treated site-by-site. Although
nucleotide assignment is not unique, any assignment gives an evolutionary his-
tory with the minimum number of substitutions.

A similar idea has been considered in [11] for inferring ancestral gene orders on
the basis of minimizing the number of breakpoints (or maximizing the number
of adjacencies). The Ma et. al algorithm [11] proceeds in two steps. First, using
a bottom-up traversal, it determines the potential adjacencies of each individual
gene. This step results in a graph at each internal node, potentially with cycles.
Then, in a top-down traversal, the information obtained on a node’s parent is
used to simplify the node’s graph. The whole algorithm is guaranteed to identify
a most-parsimonious scenario for the history of each individual adjacency. How-
ever, in contrast to the case of DNA sequences for which individual nucleotides
are independent, adjacencies are not, and thus the whole-genome prediction is
not guaranteed to minimize the number of breakpoints.

As DAGs provide information on relative orders between markers, rather than
immediate adjacencies, we aim at inferring the ancestral order (A < B or B < A)
for each pair of markers (A, B). The Kemeny-Simplification algorithm described
in Figure 2 is guaranteed to identify a most-parsimonious scenario for the his-
tory of each individual pair of markers. However, as pairs of markers are not
independent, this does not guarantee the optimality of whole-map predictions.

Algorithm Kemeny-Simplification (T)
1. In a bottom-up traversal of T ,
For each internal node v of T do

For each pair (A,B) of markers of M2
v do

If A < B (resp. A > B) in both children of v then
Set A < B (resp. A > B) in v;

Else If A > B in one child and A < B in the other, then
Set (A,B) incomparable in v;

Else If A < B (resp. A > B) in one child and incomparable in the other, then
Set A < B (resp. A > B) in v;

Else If (A, B) are incomparable in both children of v then
Set (A,B) incomparable in v;

2. In a top-down traversal of T ,
For each node v of T that is not the root do

For each pair (A,B) of markers of M2
v do

If (A,B) are incomparable in v but ordered A < B (resp. A > B)
in v’s parent then

Set A < B (resp. A > B) in v;

Fig. 2. For each node v, Mv is the marker content at v

A Phylogenetic Approach to Genetic Map Refinement 205

During the second step of the algorithm (top-down traversal), conflicts may
be created. For example, let A, B, C be three markers such that A > B and
(A, C) and (B, C) are incomparable. Resolving this two pairs by B > C and
C > A results in transforming the comparable pair (A, B) into a conflicting
pair. This may lead to a loss of order information at the leaves of T . To avoid
this problem, we weight each order between two markers based on the number
of times it appears in all species. Then for each leaf v, orders between pairs
of markers in the parent of v are sorted according to their weight, and added
successively in the DAG of v if they do not create a conflict.

4.2 A Heuristic for the Minimum-Breakpoint Linearization
Problem

As the Kemeny distance is not guaranteed to provide a good evaluation of the
evolutionary distance in the case of large inversions, before applying the Kemeny-
simplification algorithm on T , we first simplify DAGs by using a heuristic for the
Minimum-Breakpoint Linearization Problem. This heuristic is based on the third
step of the Ma et al. [11] algorithm aiming to recover a “partially linearized”
gene order at a particular node of the tree. This step proceeds by first weighting
each edge by an estimate of the likelihood of its presence in the ancestor, and
then choosing adjacency paths of maximum weight.

Based on this idea, we develop the Breakpoint-Simplification algorithm that
proceeds as follows:

For each leaf v of T ,

1. Convert v’s DAG into an extended DG G (possibly containing cycles) as
follows: (1) expand each vertex corresponding to an SCC into the set of
vertices of this SCC; (2) add an edge between each vertex connected to an
SCC and each vertex of this SCC; (3) add an edge between each pair of
markers that are potentially adjacent in a linear extension of the DAG (i.e.
between all incomparable markers). For example, in DAG12 of Figure 1, the
SCC S = {D, E, F, G, L} is replaced by five vertices labeled D, E, F , G, L;
each pair of vertices (X, Y) belonging to {B, C} × S, S × {I, H} and S2 is
connected by an edge.

2. Weight each edge (A, B) of G by an estimate w(A, B) of the probability of
having B following A in the species f . This estimate is computed as follows:

w(A, B) =

∑ik

i=i1
1

ADJ(A,i)

n

where i1, . . . , ik represent the k leaves of T (including v) containing (A, B) as
an edge in their corresponding extended DG, and ADJ(A, i), for i1 ≤ i ≤ ik,
is the number of edges adjacent to A in the extended DG of i. Recall that n
is to the number of leaves (species) of T .

3. Construct a set of paths of maximum weight that cover all nodes of G. This
problem is known to be NP-hard [5] and we propose a simple greedy heuristic

206 D. Bertrand, M. Blanchette, and N. El-Mabrouk

to resolve it. Our heuristic proceeds by sorting all the edges of G by weight,
and then adding them in order to a new graph, initially restricted to the set
of vertices of G and no edges, until each vertex has a unique predecessor and
successor.

4. Incorporate the obtained set of adjacency paths into the original v’s DAG.
This is done by applying the heuristic that we have developed in [1] for sim-
plifying a DAG with respect to a given total order. In our case, the heuristic
is applied successively to the total order represented by each adjacency path.

4.3 The General Method

In summary, our methodology can be subdivided into three main steps:

– Step 1. Perform map integration at each leaf of T ;
– Step 2. Apply the Breakpoint-Simplification algorithm on T ;
– Step 3. Apply the Kemeny-Simplification algorithm on T .

In the following section, we will analyse the efficiency of each step of the
general method.

5 Experiments on the Gramene Database

Gramene [8] is an important comparative genomics mapping database for crop
grasses. It uses the completely sequenced rice genome to organize information
on maize, sorghum, wheat, barley, and other gramineae (see Figure 3 for a phy-
logenetic tree of the species present in Gramene, excluding rice). It provides
curated information on genetic and genomic datasets related to maps, markers,
genes, genomes and quantitative trait loci, as well as invaluable tools for map
comparison.

Correlating information from one map to another and from one species to
another requires to have common markers, i.e. markers that are highly poly-
morphic among several populations. Such markers, also called “anchor markers”
are typically SSRs (Simple Sequence Repeats, or microsatellites) or RFLPs (Re-
striction Fragment Length Polymorphism). In our study, we selected exclusively
RFLP markers, as they appeared to be the most shared among all crop species
present in Gramene, and thus those most likely to gain additional order infor-
mation following a phylogenetic analysis. Moreover, they represent the largest
family of DNA markers present in Gramene (17,715 different markers).

In order to consider only non-duplicated markers, we select, in each species,
those appearing at a single locus. Moreover, as only markers shared between
species may gain additional order information from a phylogenetic study, we
further restrict ourselves, for each species s, to the set of “valid markers” defined
as follows: a valid marker in s is a non-duplicated marker in s that appears as
a non-duplicated marker in at least one other species.

Figure 3 gives the distribution of total and valid RFLPs among species, and
also the number of incomparable and conflicting (markers involved in a cycle)

A Phylogenetic Approach to Genetic Map Refinement 207

0 (0, 0)
54 / 137
Foxtail millet (1)

0%(0, 0)

107283

183

231

262

202

134

Rye (1)
76 / 181
42 (42, 0)642 (271, 371)

Wheat (8)
183 / 1199

760 (404, 356)
173 / 976
Barley (11)

143 / 313
Oat (1)

83 (83, 0) 350 (323, 27)
212 / 4856
Maize (13)

956 (956, 0)
226 / 2288
Sorghum (4) Pearl millet (9)

88 / 281
153 (153, 0)

44%(145, 8) 41%(391, 0)41%(157, 108) 5%(2, 0) 50%(220, 161) 8%(7, 0) 40%(61, 0)

Fig. 3. Species included in the Gramene database (excluding the rice genome), with
the phylogeny provided by [9]. Each internal node is labeled by the cardinality of its
marker set. Labels of each leaf are defined from line 1 to line 4 as follows: (1) the species
name followed, in brackets, by the number of map sets used in our study (each map set
involves one map for each chromosome); (2) the number of valid RFLPs followed by
the total number of RFLPs; (3) the total number of incomparable and conflicting pairs
of markers in the union DG resulting from map integration (in brackets, the number of
incomparable pairs, followed by the number of conflicting pairs); (4) the percentage
of resolved incomparable and conflicting pairs of markers (in brackets, the number of
resolved incomparable pairs , followed by the number of resolved conflicting pairs).

pairs of markers in the union DG obtained after the first step of of map integra-
tion. The total set of incomparable and conflicting pairs are those we hope to
resolve following a phylogenetic analysis.

Results of applying our methodology (Section 4.3) to the Gramene database
are given in the last line of leaf labels in Figure 3. The percentage of resolved
incomparable and conflicting pairs of markers is given, followed in brackets by
the actual number of resolved pairs. Overall, for species with a number of map
set greater than one, the resolution rate ranges from 40% to 50%.

Results evaluation. To test the efficiency of our methodology, we perform the
following experiments. We randomly choose 50 segments of two or three adjacent
genes, each from a randomly chosen genetic map; the markers of each segment
are made incomparable. We then apply our methodology, and check the percent-
age of incomparable pairs correctly resolved after each step (Section 4.3). This
process is repeated 500 times.

Results are presented in Table 1. Performing the union of individual maps
allows the integration, in a single map, of the complementary information in-
terspersed in these maps. As conflicts between individual maps are usually due
to mapping errors rather than to real rearrangement events that would have
affected one particular population, they are expected to be rare. This observa-
tion is confirmed by our results. Indeed, the step of integrating maps (INTEG
in Table 1) allows to resolve a large proportion of incomparable pairs, with high
resolution power (∼ 2% errors).

208 D. Bertrand, M. Blanchette, and N. El-Mabrouk

Table 1. “Segment size 2” (resp. “Segment size 3”): simulations done with seg-
ments of two markers (resp. three markers); % Resolution: percentage of introduced
artificial incomparable pairs of markers that are resolved by the considered method;
% Errors: percentage of errors (incomparable pairs incorrectly ordered) among the
number of resolved artificial incomparable pairs; Results are presented for the fol-
lowing application of the general methodology steps (Section 4.3). INTEG: Step 1;
INTEG+KEM: Step 1 followed directly by Step 3; INTEG+BP: Step 1 followed by
Step 2; INTEG+BP+KEM: Final results (after applying Step 1, Step 2 and Step 3).
Numbers in brackets are the percentage of resolution and error, for incomparable pairs
remaining after INTEG.

Segment size 2 Segment size 3

% Resolution % Errors % Resolution % Errors

INTEG 36.7 2.3 37.4 2.6

INTEG+KEM 51.8 (15.1) 12.1 (36.0) 52.9 (15.6) 11.7 (34.0)

INTEG+BP 48.5 (11.8) 9.0 (30.0) 50.1 (12.7) 8.7 (26.7)

INTEG+BP+KEM 54.4 (17.7) 11.5 (30.6) 54.9 (17.5) 10.6 (27.5)

Following this step, the Kemeny-Simplification algorithm (KEM) has a higher
resolution rate than the Breakpoint-Simplification algorithm (BP), but with a
lower level of efficiency (∼ 12% errors for KEM, versus 9% for BP). Applying
the complete methodology (BP followed by KEM) leads to a good compromise.
However, it should be noted that less confidence should be given to incomparable
pairs resolved from the phylogenetic information in comparison to those resolved
from combining individual maps of a given species. This is indicated by the
percentage of error (∼ 30%) for incomparable pairs remaining after step INTEG
(number in brackets in Table 1).

6 Conclusion

This paper is a first effort towards accounting for the phylogenetic information
of a species tree to increase the resolution of genetic maps. The main assumption
is that individual maps of one species may gain additional order information by
considering the complementary information obtained from closely related species.
In the case of species that are close enough to preserve a high degree of gene order
conservation, minimizing the Kemeny distance on the species tree is an appro-
priate way of increasing the resolution of individual maps. However, the Kemeny
distance is not appropriate anymore for species that have diverged from each other
by large rearrangement events. In this case, using a genomic rearrangement mea-
sure (e.g. inversions or breakpoints) is more appropriate. Based on this idea, we
have designed a two-step methodology: resolve a number of incomparable markers
by considering a rearrangement distance (namely the breakpoint distance), and
then increase the resolution rate by considering the Kemeny distance.

Another more accurate heuristic for the Minimum-Breakpoint Linearization
Problem may be designed by using a Median Branch-and-Bound approach,

A Phylogenetic Approach to Genetic Map Refinement 209

similar to the one developed for inferring ancestral gene orders of a species
tree [15]. The general idea would be to begin with an arbitrary order at each
internal node of the species tree, and then, in a bottom-up traversal, consider
each triplet, and improve the order of the median by minimizing the breakpoint
or inversion distance. However, as leaves are labeled by partial orders, instead
of a linear-time algorithm for computing the breakpoint distance between two
orders, an exponential-time algorithm, as the one that we have developed in [1],
would be needed for computing a distance between a partial and a total order.
The resulting complete heuristic is therefore likely to be intractable for reason-
ably large datasets. Moreover, as the number of possible solutions is likely to be
huge, evaluating the obtained resolutions may be much more difficult.

Results obtained on the Gramene database are encouraging, as a high level of
resolution is reached. However, our preliminary simulations performed to evalu-
ate the method reveal a lack of specificity. These simulations may be improved,
for example by removing an individual map and checking whether the order
information it contains can be recovered by our methodology. Additional work
should also be done to improve the various steps of the methodology, and better
adapt it to the gramineae species.

References

1. Blin, G., Blais, E., Hermelin, D., Guillon, P., Blanchette, M., El-Mabrouk, N.:
Gene maps linearization using genomic rearrangement distances. Journal of Com-
putational Biology 14(4), 394–407 (2007)

2. Caprara, A.: The reversal median problem. Journal on Computing 15(1), 93–113
(2003)

3. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K.: An introduction to
markers, quantitative trait loci (QTL) mapping and marker-assisted selection for
crop improvement: The basic concepts. Euphytica 142, 169–196 (2005)

4. Fitch, W.M.: Toward defining the course of evolution: Minimum change for a spe-
cific tree topology. Systematic Zoology 20, 406–416 (1971)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

6. Jackson, B.N., Aluru, S., Schnable, P.S.: Consensus genetic maps: a graph theo-
retic approach. In: IEEE Computational Systems Bioinformatics Conference (CSB
2005), pp. 35–43 (2005)

7. Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus genetic maps as median orders
from inconsistent sources. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 5(2), 161–171 (2008)

8. Jaiswal, P., et al.: Gramene: a bird’s eye view of cereal genomes. Nucleic Acids
Research 34, D717–D723 (2006)

9. Kellogg, E.A.: Relationships of cereal crops and other grasses. Proceedings of the
National Academy of Sciences of USA 95(5), 2005–2010 (1998)

10. Kemeny, J.P.: Mathematics without numbers. Daedelus 88, 577–591 (1959)

11. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette,
M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral
genome. Genome Research 16(12), 1557–1565 (2006)

210 D. Bertrand, M. Blanchette, and N. El-Mabrouk

12. Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components
in a directed graph. Information Processing Letters 49, 9–14 (1993)

13. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. In:
Electronic Colloquium on Computational Complexity (ECCC), Report 71 (1998)

14. Saari, D., Merlin, V.: A geometric examination of Kemeny’s rule. Social Choice
and Welfare 7, 81–90 (2000)

15. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology 5, 555–570 (1998)

16. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal of
Computing 1(2), 146–160 (1972)

17. Wakabayashi, Y.: The complexity of computing medians of relations. Resenhas 3,
323–349 (1998)

18. Yap, I.V., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S., McCouch,
S.R.: A graph-theoretic approach to comparing and integrating genetic, physical
and sequence-based maps. Genetics 165, 2235–2247 (2003)

19. Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes.
Bioinformatics 21(supp. 1), 502–508 (2005)

20. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4(4), 515–522 (2007)

Sorting Cancer Karyotypes by Elementary

Operations

Michal Ozery-Flato and Ron Shamir

School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
{ozery,rshamir}@post.tau.ac.il

Abstract. Since the discovery of the “Philadelphia chromosome” in
chronic myelogenous leukemia in 1960, there is an ongoing intensive re-
search of chromosomal aberrations in cancer. These aberrations, which
result in abnormally structured genomes, became a hallmark of cancer.
Many studies give evidence to the connection between chromosomal al-
terations and aberrant genes involved in the carcinogenesis process. An
important problem in the analysis of cancer genomes, is inferring the his-
tory of events leading to the observed aberrations. Cancer genomes are
usually described in form of karyotypes, which present the global changes
in the genomes’ structure. In this study, we propose a mathematical
framework for analyzing chromosomal aberrations in cancer karyotypes.
We introduce the problem of sorting karyotypes by elementary opera-
tions, which seeks for a shortest sequence of elementary chromosomal
events transforming a normal karyotype into a given (abnormal) cancer-
ous karyotype. Under certain assumptions, we prove a lower bound for
the elementary distance, and present a polynomial-time 3-approximation
algorithm. We applied our algorithm to karyotypes from the Mitelman
database, which records cancer karyotypes reported in the scientific lit-
erature. Approximately 94% of the karyotypes in the database, totalling
57,252 karyotypes, supported our assumptions, and each of them was
subjected to our algorithm. Remarkably, even though the algorithm is
only guaranteed to generate a 3-approximation, it produced a sequence
whose length matches the lower bound (and hence optimal) in 99.9% of
the tested karyotypes.

Introduction

Cancer is a genetic disease, caused by genomic mutations leading to the aberrant
function of genes. Those mutations ultimately give cancer cells their proliferative
nature. Hence, inferring the evolution of these mutations is an important problem
in the research of cancer. Chromosomal mutations that shuffle/delete/duplicate
large genomic fragments are common in cancer. Many methods for detection
of chromosomal mutations use chromosome painting techniques, such as G-
banding, to achieve a visualization of cancer cell genomes. The description of
the observed genome organization is called a karyotype (see Fig. 1). In a kary-
otype, each chromosome is partitioned into continuous genomic regions called
bands, and the total number of bands is the banding resolution. Over the last

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 211–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 M. Ozery-Flato and R. Shamir

decades, a large amount of data has been accumulated on cancer karyotypes.
One of the largest depositories of cancer karyotypes is the Mitelman database
of chromosomal aberrations in cancer [9], which records cancer karyotypes re-
ported in the scientific literature. These karyotypes are described using the ISCN
nomenclature [8], and thus can be parsed automatically.

Fig. 1. A schematic view of two real karyotypes: a normal female karyotype (a), and
the karyotype of MCF-7 breast cancer cell-line (b) [1]. In the normal karyotype, all
chromosomes, except X and Y, appear in two identical copies, and each chromosome
has a distinct single color. In the cancer karyotype presented here, only chromosomes
11,14, and 21 show no chromosomal aberrations.

Cancer karyotypes exhibit a wide range of chromosomal aberrations. The com-
mon classification of these aberrations categorizes them into a variety of specific
types, such as translocations, iso-chromosomes, etc. Inferring the evolution of
cancer karyotypes using this wide vocabulary of complex alteration patterns is
a difficult task. Nevertheless, the entire spectrum of chromosomal alterations can
essentially be spanned by four elementary operations: breakage, fusion, duplica-
tion, and deletion (Fig. 2). A breakage, formally known as a “double strand break”,
cuts a chromosomal fragment into two. A fusion ligates two chromosomal frag-
ments into one. Genomic breakages, which occur quite frequently in our body cells,
are normally repaired by the corresponding inverse fusion. Mis-repair of genomic
breakages is believed to be a major cause of chromosomal aberrations in cancer
[4]. Other prevalent chromosomal alterations in cancer genomes are duplications
and deletions of chromosomal fragments. These four elementary events play a sig-
nificant role in carcinogenesis: fusions and duplications can activate oncogenes,
while breakages and deletions can eliminate tumor suppressor genes.

Based on the four elementary operations presented above, we introduce a new
model for analyzing chromosomal aberrations in cancer. We study the problem
of finding a shortest sequence of operations that transforms a normal karyotype

Sorting Cancer Karyotypes by Elementary Operations 213

Fig. 2. Illustrations of elementary operations: breakage, fusion, duplication, and dele-
tion. The inverse elementary operations are: fusion, breakage, c-deletion, and addition.

into a given cancer karyotype. This is the problem of karyotype sorting by ele-
mentary operations (KS), and the length of a shortest sequence is the elementary
distance between the normal and cancer karyotypes. The elementary distance in-
dicates how far, in terms of number of operations, a cancer karyotype is from
the normal one, and is not a metric in the mathematical sense. The elemen-
tary distance corresponds to the complexity of the cancer karyotype, which may
give an indication of the tumor phase [6]. The reconstructed elementary opera-
tions can be used to detect common events for a set of cancer karyotypes, and
thus point out to genomic regions suspect of containing genes associated with
carcinogenesis.

Under certain assumptions, which are supported by most cancer karyotypes,
the KS problem can be reduced in linear time to a simpler problem, called RKS.
For the latter problem we prove a lower bound for the elementary distance, and
present a polynomial-time 3-approximation algorithm. We show that approxi-
mately 94% of the karyotypes in the Mitelman database (57,252) support our
assumptions, and each of these was subjected to our algorithm. Remarkably,
even though the algorithm is only guaranteed to generate a 3-approximation,
it produced a sequence whose length matches the lower bound (and hence op-
timal) in 99.9% of the tested karyotypes. Manual inspection of the remaining
cases reveals that the computed sequence for each of these cases is also optimal.

The paper is organized as follows. In Section 1 we give the combinatorial
formulation of the KS problem and its reduced variant RKS. In the rest of the
paper we focus on the RKS problem. In Section 2 we prove a lower bound for the
elementary distance for RKS. Section 3 describes our 3-approximation algorithm
for RKS. Finally, in Section 4 we present the results of the application of our
algorithm to the karyotypes in the Mitelman database. Due to space limits, most
proofs are omitted.

1 Problem Formulation

1.1 The KS Problem

The KS problem receives two karyotypes as an input: Knormal, and the cancer
karyotype, Kcancer. We represent each of the two karyotypes by a multi-set of

214 M. Ozery-Flato and R. Shamir

chromosomes. Every chromosome in Knormal is presented as an interval of B
integers, where each integer represents a band. For simplicity we assume that all
the chromosomes in Knormal share the same B, which corresponds to the banding
resolution. Every two chromosomes in the normal karyotype are either identical,
i.e. are represented by the same interval, or disjoint. More precisely, we represent
every chromosome in Knormal by the interval [(k − 1)B + 1, kB], where k is an
integer that identifies the chromosome. The normal karyotype usually contains
exactly two copies of each chromosomes, with the possible exception of the sex
chromosomes. Every chromosome in Kcancer is either a fragment or a concatena-
tion of several fragments, where a fragment is a maximal sub-interval, with two
bands or more, of a chromosome in the normal karyotype. More formally, a frag-
ment is a maximal interval of the karyotype of the form [i, j] ≡ [i, i + 1, . . . , j],
or [j, i] ≡ [j, j − 1, . . . , i], where i < j, i, j ∈ {(k − 1)B + 1, . . . , kB}, and
[(k − 1)B + 1, kB] ∈ Knormal. Note that in particular, a chromosome in Kcancer

can be identical to a chromosome in Knormal. We use the symbol “::” to denote
a concatenation between two fragments, e.g., [i, j] :: [i′, j′]. Every chromosome,
in both Knormal and Kcancer, is orientation-less, i.e. reversing the order of the
fragments, along with their orientation, results in an equivalent chromosome.
For example, X = [i, j]::[i′, j′] ≡ [j′, i′]::[j, i] = X.

We refer to the concatenation point of two intervals as an adjacency if the
union of their intervals is equivalent to a larger interval in Knormal. In other
words, two concatenated intervals that form an adjacency can be replaced by one
equivalent interval. For example, the concatenation point in [5, 3]::[3, 1] ≡ [5, 1]
is an adjacency. Typically, a breakage occurs within a band, and each of the
resulting fragments contains a visible piece of this broken band. For example, if
[5, 1] is broken within band 3, then the resulting fragments are generally denoted
the by [5, 3] and [3, 1]. For this reason, we do not consider the concatenation [5, 3]::
[2, 1] as an adjacency. A concatenation point that is not an adjacency, is called a
breakpoint1. Further examples of concatenation points that are breakpoints are:
[1, 3]::[5, 6] and [2, 4]::[4, 3].

We assume that the cancer karyotype, Kcancer, has evolved from the normal
karyotype, Knormal, by the following four elementary operations:

I. Fusion. A concatenation of two chromosomes, X1 and X2, into one chro-
mosome X1::X2.

II. Breakage. A split of a chromosome into two chromosomes. A split can oc-
cur within a fragment, or between two previously concatenated fragments,
i.e. in a breakpoint. In the former case, where the break is in a fragment
[i, j], the fragment is split into two complementing fragments: [i, k] and
[k, j], where k ∈ {i + 1, i + 2, . . . , j − 1}.

III. Duplication. A whole chromosome is duplicated, resulting in two identi-
cal copies of the original chromosome.

IV. Deletion. A complete chromosome is deleted from the karyotype.
1 Formally, since the broken ends of a chromosome are not considered breakpoints

here, the term “fusion-point” may seem more appropriate. However, we kept the
name “breakpoint” due to its prior use and brevity.

Sorting Cancer Karyotypes by Elementary Operations 215

Given Knormal and Kcancer, we define the KS problem as finding a short-
est sequence of elementary operations that transforms Knormal into Kcancer. An
equivalent formulation of the KS problem is obtained by considering the inverse
direction: find a shortest sequence of inverse elementary operations that trans-
forms Kcancer into Knormal. Clearly, fusion and breakage operations are inverse
to each other. The inverse to a duplication is a constrained deletion (abbreviated
c-deletion), where the deleted chromosome is one of two or more identical copies.
In other words, a c-deletion can delete a chromosome only if there exists another
identical copy of it. The inverse of a deletion is an addition of a chromosome.
Note that in general, the added chromosome need not be a duplicate of an ex-
isting chromosome and can contain any number of fragments. For the rest of the
paper, we analyze KS by sorting in reverse order, i.e. starting from Kcancer and
going back to Knormal. The sorting sequences will also start from Kcancer.

1.2 Reducing KS to RKS

In this section we present a basic analysis of KS, which together with two ad-
ditional assumptions, allows the reduction of KS to a simpler variant in which
no breakpoint exists (RKS). As we shall see, our assumptions are supported by
most analyzed cancer karyotypes.

We start with several definitions. A sequence of inverse elementary operations
is sorting, if its application to Kcancer results in Knormal. We shall refer to a
shortest sorting sequence as optimal. Since every fragment contains two or more
bands, we can present any band i within it by an ordered pair of its two ends,
i0, which is the end closer to the minimal band in the fragment, and i1, the
end closer to the maximal band in the fragment. More formally, we map the
fragment [i, j], i �= j, to [i1, j0] ≡ [i1, (i + 1)0, (i + 1)1, . . . , j0] if i < j, and oth-
erwise to [i0, j1] ≡ [i0, (i − 1)1, (i − 1)0, . . . , j1]. We say that two fragment-ends,
a and a′, are complementing if {a, a′} = {i0, i1}. The notion of viewing bands
as ordered pairs is conceptually similar to considering genes / synteny blocks as
oriented, as is standard in the computational studies of genome rearrangements
in evolution [3]. In this study we consider bands as ordered pairs to well identify
breakpoints: as mentioned previously, a breakage usually occurs within a band,
say i, and the two ends of i, i0 and i1, are separated between the two new result-
ing fragments. Thus, a fusion of two fragment-ends forms an adjacency iff these
ends are complementing. We identify a breakpoint, and a concatenation point in
general, by the two corresponding fragment-ends that are fused together. More
formally, the concatenation point in [a, b]::[a′, b′] is identified by the (unordered)
pair {b, a′}. For example, the breakpoint in [1, 2] :: [4, 3] ≡ [11, 20] :: [40, 31] is
identified by {20, 40}. Note that the two other fragment-ends, 1 and 3, do not
matter for that breakpoint’s identity. Having defined breakpoint identities, we
refer to a breakpoint as unique if no other breakpoint shares its identity, and
otherwise we call it recurrent. In particular, a breakpoint in a non-unique chro-
mosome (i.e., a chromosome with another identical copy) is recurrent. Last, we
say that a chromosome X is complex if it contains at least one breakpoint, and
simple otherwise. In other words, chromosome X is simple if it consists of one

216 M. Ozery-Flato and R. Shamir

fragment. Analogously, an addition is complex if the chromosome added is com-
plex, and simple otherwise.

Observation 1. Let S be an optimal sorting sequence. Suppose Kcancer contains
a breakpoint, p, that is not involved in a c-deletion in S. Then there exists an
optimal sorting sequence S′, in which the first operation is a breakage of p.

Proof. Since Knormal does not contain any breakpoint, p must be eventually
eliminated by S. A breakpoint can be eliminated either by a breakage or by a
c-deletion. Since p is not involved in a c-deletion, p is necessarily eliminated by
a breakage. Moreover, this breakage can be moved to the beginning of S since
no other operation preceding it involves p. ��
Corollary 1. Let S be an optimal sorting sequence. Suppose S contains an ad-
dition of chromosome X = f1::f2:: . . . ::fk, where f1, f2, . . . , fk are fragments,
and none of the k−1 breakpoints in X is involved in any subsequent c-deletion in
S. Then the sequence S′, obtained from S by replacing the addition of X with the
additions of f1, f2, . . . , fk (overall k additions), is an optimal sorting sequence.

Proof. By Observation 1, the breakpoints in X can be immediately broken after
its addition. Thus replacing the addition of X , and the k−1 breakages following
it, by k additions of f1, f2, . . . , fk, yields an optimal sorting sequence. ��
It appears that complex additions, as opposed to simple additions, makes KS
very difficult to analyze. Moreover, based on Corollary 1, complex additions can
be truly beneficial only in complex scenarios in which c-deletions involve recur-
rent breakpoints that were formerly created by complex additions. An analysis
of a large collection of cancer karyotypes reveals that only 6% of the karyotypes
contain recurrent breakpoints (see Section 4). Therefore, for the rest of this
paper, we make the following assumption:

Assumption 1. Every addition is simple, i.e., every added chromosome con-
sists of one fragment.

Using the assumption above, the following observation holds:

Observation 2. Let p be a unique breakpoint in Kcancer. Then there exists an
optimal sorting sequence in which the first operation is a breakage of p.

Proof. If p is not involved in a c-deletion, then by Observation 1, p can be broken
immediately. Suppose there are k c-deletions involving p or other breakpoints
identical to it. Note that following Assumption 1, from the four inverse elemen-
tary operations, only fusion can create a new breakpoint. Now, any c-deletion
involving p requires another fusion that creates a breakpoint p′, identical to p.
Thus we can obtain an optimal sorting sequence, S′, from S, by: (i) first break-
ing p, (ii) not creating any breakpoint point p′ identical to p, (iii) replacing any
c-deletion involving p, or one of its copies, with two c-deletions of the corre-
sponding 4 unfused chromosomes, and (iii) not having to break the last instance
of p (since it was already broken). In summary, we moved the breakage of p to
the beginning of the sorting sequence and replaced k fusions and k c-deletions
(i.e. 2k operations) with 2k c-deletions. ��

Sorting Cancer Karyotypes by Elementary Operations 217

Observation 3. In an optimal sequence, every fusion creates either an adja-
cency, or a recurrent breakpoint.

Proof. Let S be an optimal sorting sequence. Suppose S contains a fusion that
creates a new unique breakpoint p. Then, following Observation 2, p can be im-
mediately broken after it was formed, a contradiction to the optimality of S. ��

In this work, we choose to focus on karyotypes that do not contain recurrent break-
points. According to our analysis of the Mitelman database, 94% of the karyotypes
satisfy this condition. Thus we make the following additional assumption:

Assumption 2. The cancer karyotype, Kcancer, does not contain any recurrent
breakpoint.

Assumption 2 implies that (i) we can immediately break all the breakpoints in
Kcancer (due to Observation 2), and (ii) consider fusions only if they create an
adjacency (due to Observation 3). Hence, for each unique normal chromosome,
its fragments can be used separated from all the other fragments and used to
solve a simpler variant of KS: In this variant, (i) Knormal = {[1, B] × N}, (ii)
there are no breakpoints in Kcancer, and (iii) neither fusions, nor additions, form
breakpoints. Usually, N = 2. Exceptions are N = 1 for the sex chromosomes,
and N > 2 for cases of global changes in the ploidy. We refer to this reduced
problem as RKS (restricted KS). For the rest of the paper, we shall limit our
analysis to RKS only.

2 A Lower Bound for the Elementary Distance

In this section we analyze RKS and define several combinatorial parameters
that affect the elementary distance between Knormal and Kcancer, denoted by
d ≡ d(Knormal, Kcancer). Based on these parameters, we prove a lower bound on
the elementary distance. Though theoretically our lower bound is not tight, we
shall demonstrate in Section 4 that in practice, for the vast majority (99.9%) of
the real cancer karyotypes analyzed, the elementary distance to the appropriate
normal karyotype achieves this bound.

2.1 Extending the Karyotypes

For the simplicity of later analysis, we extend both Knormal and Kcancer by adding
each 2N “tail” intervals:

K̂normal = Knormal ∪ {[0, 1] × N, [B, B + 1] × N}
K̂cancer = Kcancer ∪ {[0, 1] × N, [B, B + 1] × N}

These new “tail” intervals do not take part in elementary operations: breakage
and fusion are still limited to {2, 3, . . . , B−1}, and intervals added/c-deleted are
contained in [1, B]. Hence d(Knormal, Kcancer) ≡ d(K̂cancer, K̂cancer). Their only
role is to simplify the definitions of parameters given below.

218 M. Ozery-Flato and R. Shamir

2.2 The Histogram

We define the histogram of K̂cancer, H ≡ H(K̂cancer) : {[i−1, i] | i = 1, 2, . . . , B+
1} → N∪{0}, as follows. Let H([i−1, i]) be the number of fragments in K̂cancer

that contain the interval [i − 1, i]. See Fig. 3(b) for an example. From the defi-
nition of K̂cancer, it follows that H([0, 1]) = H([B, B + 1]) = N . For simplicity
we refer to H([i − 1, i]) as H(i). The histogram H has a wall at i ∈ {1, . . . , B}
if H(i) �= H(i + 1). If H(i + 1) > H(i) (respectively, < H(i)) then the wall at
i is called a positive wall (respectively, a negative wall). Intuitively, a wall is a
vertical boundary of H . We define w to be the total size of walls in H . More
formally,

w =
B∑

i=1

|H(i + 1) − H(i)|

Since H(1) = H(B + 1) = N , the total size of positive walls is equal to the
total size of negative walls, and hence w is even. Note that if K̂cancer = K̂normal

then w = 0. The pair (i, h) ≡ (i, [h − 1, h]), h ∈ N, is a brick in the wall at i if
H(i) + 1 ≤ h ≤ H(i + 1) or H(i + 1) + 1 ≤ h ≤ H(i). A brick (i, h) is positive
(respectively, negative) if the wall at i is positive (respectively, negative). Note
that the number of bricks in a wall is equal to its total size. Hence w corresponds
to the total number of bricks in H .

Observation 4. For a breakage/fusion, ∆w = 0; For a c-deletion/addition,
∆w = {−2, 0, 2}.

2.3 Counting Complementing End Pairs

Consider the case where w = 0. Then there are no gains and no losses of bands, and
the number of fragments in K̂cancer is greater or equal to the number of fragments
in K̂normal. Note that each of the four elementary operations can decrease the to-
tal number of fragments by at most one. Hence when w = 0, an optimal sorting
sequence would be to fuse pairs of complementing fragment-ends, not including
the tails. Let us define f ≡ f(K̂cancer) as the maximum number of disjoint pairs
of complementing fragment-ends. Note there could be many alternative choices
of complementing pairs. Nevertheless, any maximal disjoint pairing is also max-
imum. It follows that if w = 0, then d(K̂normal, K̂cancer) = f − 2N . Also, when
w �= 0, a c-deletion may need to be preceded by some fusions of complementing
ends, to form two identical fragments. In general, the following holds:

Observation 5. For breakage ∆f = 1; For fusion, ∆f = −1; For c-deletion,
∆f ∈ {0,−1,−2}; For addition, ∆f ∈ {0, 1, 2}.

Lemma 1. For breakage/addition, ∆(w/2 + f) = 1; For fusion/c-deletion,
∆(w/2 + f) = −1.

Sorting Cancer Karyotypes by Elementary Operations 219

2.4 Simple Bricks

A brick (i, h) is simple if: (i) (i, h − 1) is not a brick, and (ii) K̂cancer does not
contain a pair of complementing fragment-ends in i. Thus, in particular, a simple
brick cannot be eliminated by a c-deletion. On the other hand, for a non-simple
brick, (i, h), there are two fragments ending in the corresponding location (i.e.
i). Nevertheless, it may still be impossible to eliminate (i, h) by a c-deletion if
these two fragments are not identical. We define s ≡ s(K̂cancer) as the number
of simple bricks.

Observation 6. For breakage, ∆s ∈ {0,−1}; For fusion, ∆s ∈ {0, 1}; For c-
deletion, ∆s = 0; For addition, |∆s| ≤ 2.

2.5 The Weighted Bipartite Graph of Bricks

We now define the last parameter in the lower bound formula for the elementary
distance. It is based upon matching pairs of bricks, where one is positive and
the other is negative. Note that in the process of sorting K̂cancer, the histogram
is flattened, i.e., all bricks are eliminated, which can be done only by using c-
deletion/addition operations. Observe that if a c-deletion/addition eliminates
a pair of bricks, then one of these bricks is positive and the other is negative.
Thus, roughly speaking, every sorting sequence defines a matching between pairs
of positive and negative bricks that are eliminated together.

Given two bricks, v = (i, h) and v′ = (i′, h′), we write v < v′ (resp. v = v′)
if i < i′ (resp. i = i′). Let V + and V − be the sets of positive and negative
bricks respectively. We say that v and v′ have the same sign, if either v, v′ ∈ V +,
or v, v′ ∈ V −. Two bricks have the same status if they are either both simple,
or both non-simple. Let BG = (V +, V −, δ) be the weighted complete bipartite
graph, where δ : V + × V − → {0, 1, 2} is an edge-weight function defined as
follows. Let v+ ∈ V + and v− ∈ V − then:

δ(v+, v−) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 v+ and v− are both simple and v− < v+

0 v+ and v− are both non-simple and v+ < v−

1 v+ and v− have opposite status
2 otherwise

For an illustration of BG see Fig 3(c). A matching is a set of vertex-disjoint
edges from V + × V −. A matching is perfect if it covers all the vertices in BG
(recall that |V +| = |V −|). Thus a perfect matching is in particular a maximum
matching. Given a matching M , we define δ(M) as the total weight of its edges.
Let m ≡ m(K̂cancer) denote the minimum weight of a perfect matching in BG.
The problem of finding a minimum-weight perfect matching can be solved in
polynomial-time (see, e.g., [7, Theorem 11.1]). We note there exists a simple
efficient algorithm for computing m, which relies heavily on the specific weighting
scheme, δ.

Let K ′ be obtained from K by an elementary operation (a move). For a
function F defined on karyotypes, define ∆(F) = F (K ′) − F (K).

220 M. Ozery-Flato and R. Shamir

Fig. 3. An example of an (extended) cancer karyotype K̂cancer and its combi-

natorial parameters. (a) The (extended) cancer karyotype is K̂cancer = {[0, 1] ×
2, [1, 4], [4, 5], [5, 10] × 2, [10, 11] × 2, [2, 3] × 2, [6, 8]}. Here N = 2, B = 10. The num-
ber of disjoint pairs of complementing fragment-ends, f , is 5. (b) The histogram

H ≡ H(K̂cancer), which has walls at 1, 2, 3, 5, 6, and 8. There are four positive
bricks: (2, 2), (2, 3), (5, 2), and (6, 3), and four negative bricks: (1, 2), (3, 3), (3, 2),
and (8, 3). Hence w = 8. Four of the eight bricks are simple: (2, 2), (3, 2), (6, 3), and
(8, 3), thus s = 4. (c) The weighted-bipartite graph of BG. It is not hard to verify
that M = { ((2, 3), (3, 3)), ((6, 3), (3, 2)), ((2, 2), (1, 2)), ((5, 2), (8, 3)) } is a minimum-
weight perfect matching and hence m = 2.

Lemma 2. d ≥ w/2 + f − 2N + s + m ≥ 0.

3 The 3-Approximation Algorithm

Algorithm 1 below is a polynomial procedure for the RKS problem. We shall
prove that it is a 3-approximation, and then describe a heuristic that aims to
improve it.

Lemma 3. Algorithm 1 transforms K̂cancer into K̂normal using at most 3w/2+
f − 2N + s + m inverse elementary operations.

Theorem 1. Algorithm 1 is a polynomial-time 3-approximation algorithm for
RKS.

Note that the same result applies to multi-chromosomal karyotypes, by summing
the bounds for the RKS problem on each chromosome. Note also that the results
above imply also that d ∈ [w/2 + f − 2N + s + m, 3w/2 + f − 2N + s + m].

We now present Procedure 2, a heuristic that improves the performance of
Algorithm 1, by replacing Steps 12-21. The procedure assumes that (i) all bricks
are non-simple, and (ii) v+ < v−, for every (v+, v−) ∈ M , v− ∈ V −. In this
case, m = 0, and the lower bound is reached only if no additions are made.
Thus, Procedure 2 attempts to minimize the number of extra addition operations
performed. For an interval I, let L(I) and R(I) be the left and right endpoints
of I respectively.

Sorting Cancer Karyotypes by Elementary Operations 221

Algorithm 1. Elementary Sorting (RKS)
1: M ← a minimum-weight perfect matching in BG
2: for all (v−, v+) ∈M where v− < v+ do
3: Add the interval [v−, v+].
4: end for /* Now v+ < v− for every (v+, v−) ∈M , where v+ ∈ V +, v− ∈ V − */
5: for all v ∈ V + ∪ V −, v is simple, and v �= 1, B do
6: if v ∈ V + then
7: Add the interval [1, v]
8: else
9: Add the interval [v, B]

10: end if
11: end for /* Now v+ < v− for every (v+, v−) ∈M , where v+ ∈ V +, v− ∈ V − and

all the bricks are non-simple */
12: for all v− ∈ V −, v− < B do
13: Add the interval [v−, B]
14: end for /* Now all the bricks are non-simple, and v− = B,∀v− ∈ V − */
15: while V + �= ∅ do
16: v+ ← maxV +

17: for all p > v+, p < B do
18: Fuse any pair of intervals complementing at p.
19: end for
20: C-delete an interval [v+, B]
21: end while

4 Experimental Results

In this section we present the results of sorting real cancer karyotypes, using
Algorithm 1, combined with the improvement heuristic in Procedure 2.

4.1 Data Preprocessing

For our analysis, we used the Mitelman database (version of February 27, 2008),
which contained 56,493 cancer karyotypes, collected from 9,088 published stud-
ies. The karyotypes in the Mitelman database (henceforth, MD) are represented
in the ISCN format and can be automatically parsed and analyzed by the soft-
ware package CyDAS [5]. We refer to a karyotype as valid if it is parsed by
CyDAS without any error. According to our processing, 49,622 (88%) of the
records were valid karyotypes. Since some of the records contain multiple dis-
tinct karyotypes found in the same tissue, the total number of simple (valid)
karyotypes that we deduced from MD is 61,137.

A karyotype may contain uncertainties, or missing data, both represented by
a ‘?’ symbol. We ignored uncertainties and deleted any chromosomal fragments
that were not well defined.

4.2 Sorting the Karyotypes

Out of the 61,137 karyotypes analyzed, only 3,885 karyotypes (6%) contained
recurrent breakpoints. Our analysis focused on the remaining 57,252 karyotypes.

222 M. Ozery-Flato and R. Shamir

Procedure 2. Heuristic for eliminating non-simple bricks
1: while V + �= ∅ do
2: v+ ← maxV +

3: for all p > v+, p < B, p /∈ V − do
4: Fuse any pair of intervals complementing at p.
5: end for
6: if ∃I1, I2, where I1 = I2 and L(I1) = v+, and R(I1) ∈ V − then
7: Let I1, I2 be a pair of intervals with minimal length satisfying the above.
8: C-delete I1

9: else if ∃I1, I2, where L(I1) = L(I2) = v+ and R(I1) < R(I2) ∈ V − then
10: Let I1, I2 be a pair of intervals with minimal length satisfying the above.
11: Add the interval [R(I1),R(I2)]
12: else
13: Let u− = min{v− ∈ V −|v− > v+}
14: Add the interval [u−, B]
15: end if
16: end while

We note that 37% (21,315) of these karyotypes do not contain any breakpoint
at all. (In these karyotypes, no bands that are not adjacent in normal chromo-
somes are fused, but some chromosome tails as well as full chromosomes may be
missing or duplicated). Following our assumptions (see Section 1.2), we broke
all the breakpoints in each karyotype. We then applied Algorithm 1, combined
with Procedure 2, to the fragments of each of the chromosomes in these kary-
otypes. We used the ploidy of each karyotype, as the normal copy-number (N)
of each chromosome. In 99.9% (57,223) of the analyzed karyotypes our algorithm
achieved the lower-bound, and thus the produced sequences are optimal. Each
of the remaining 29 karyotypes contained a chromosome for which the computed
sequence was larger in 2 than the lower-bound. Manual inspection revealed that
for each of these cases the elementary distance was indeed 2 above the lower
bound. Hence the computed sequences were found to be optimal in 100% of the
analyzed cases.

4.3 Operations Statistics

We now present statistics on the (direct) elementary operations performed by
our algorithm. The 57,252 analyzed karyotypes, contained 84,601 (unique) break-
points in total. Hence the average number of fusions (eq. breakpoints) per kary-
otype is approximately 1.5. The distribution of the number of breakpoints per a
karyotypes, including the non-sorted karyotypes (i.e karyotypes with recurrent
breakpoints), is presented in Fig. 4. The most frequent number of breakpoints
after zero is 2, which may point to the prevalence of reciprocal translocations
in the analyzed cancer karyotypes. Table 1 summarizes the average number of
operations per sorted karyotype.

Sorting Cancer Karyotypes by Elementary Operations 223

Table 1. Average number of elementary operations per (sorted) cancer karyotype

breakage fusion deletion addition all

2.4 1.5 2.6 1.1 7.6

Fig. 4. The distribution of number of breakpoints (i.e. fusions of non-adjacent bands)
per karyotype. “Sorted karyotypes” correspond to karyotypes with no recurrent break-
points. “Non-sorted karyotypes” correspond to karyotypes with recurrent breakpoints.
About 35% of all the karyotypes do not contain any breakpoint.

5 Discussion

In this paper we propose a new mathematical model for the evolution of cancer
karyotypes, using four simple operations. Our model is in some sense the result
of an earlier work [10], where we showed that chromosome gain and loss are dom-
inant events in cancer. The analysis in [10] relied on a purely heuristic algorithm
that reconstructed events using a wide catalog of complex rearrangement events,
such as inversions, tandem-duplication etc. Here we make our first attempt to
reconstruct rearrangement events in cancer karyotypes in a more rigorous, yet
simplified, manner.

The fact that we model and analyze bands and karyotypes may seem out of
fashion. While modern techniques today allow in principle detection of chromo-
somal aberrations in cancer at an extremely high resolution, the clinical reality
is that karyotyping is still commonly used for studying cancer genomes, and to
date it is the only abundant data resource for cancer genomes structure. More-
over, our framework is not limited to banding resolution as the “bands” in our
model may represent any DNA blocks.

Readers familiar with the wealth of computational works on evolutionary
genome rearrangements (see [3] for a review), may wonder why we have not
used traditional operations, such as inversions and translocations, as has been

224 M. Ozery-Flato and R. Shamir

previously done, e.g., by Raphael et al. [12]. The reason is that while inversions
and translocations are believed to dominate the evolution of species, they form
less than 25% of the rearrangement events in cancer karyotypes [10], and 15% in
malignant solid tumors in particular. The extant models for genome rearrange-
ments do not cope with duplications and losses, which are frequently observed
in cancer karyotypes, and thus are not suitable for cancer genomes evolution.
Extending these models to allow duplications results, even for the simplest mod-
els, in computationally difficult problems (e.g. [11, Theorem 10]). On the other
hand, the elementary operations in our model can easily explain the variety of
chromosomal aberrations viewed in cancer (including inversions and transloca-
tions). Moreover, each elementary operation we consider is strongly supported
by a known biological mechanism [2]: breakage corresponds to a double-strand-
break (DSB); fusion can be viewed as a non-homologous end-joining DSB-repair;
whole chromosome duplications and deletions are caused by uneven segregation
of chromosomes.

Based on our new model for chromosomal aberrations, we defined a new
genome sorting problem. To further simplify this problem, we made two assump-
tions, which are supported by the vast majority of reported cancer karyotypes.
We presented a lower bound for this simplified problem, followed by a polyno-
mial 3-approximation algorithm. The application of this algorithm to 57,252 real
cancer karyotypes yielded solutions that achieve the lower bound (and hence an
optimal solution) in almost all cases (99.9%). This is probably due to the relative
simplicity of reported karyotypes, especially after removing ones with repeated
breakpoints (cf. Fig. 4).

In the future, we would like to extend this preliminary work by weakening
our assumptions in a way that will allow the analysis of the remaining non-
analyzed karyotypes (6% of the data), which due to their complexity, are likely
to correspond to more advanced stages of cancer. Our hope is that this study
will lead to further algorithmic research on chromosomal aberrations, and thus
help in gaining more insight on the ways in which cancer evolves.

Acknowledgements

We thank the referees for their careful and critical comments. This study was
supported in part by the Israeli Science Foundation (grant 385/06).

References

1. NCI and NCBI’s SKY/M-FISH and CGH Database (2001),
http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi

2. Albertson, D.G., Collins, C., McCormick, F., Gray, J.W.: Chromosome aberrations
in solid tumors. Nature Genetics 34, 369–376 (2003)

3. Bourque, G., Zhang, L.: Models and methods in comparative genomics. Advances
in Computers 68, 60–105 (2006)

http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi

Sorting Cancer Karyotypes by Elementary Operations 225

4. Ferguson, D.O., Frederick, W.A.: DNA double strand break repair and chromo-
somal translocation: Lessons from animal models. Oncogene 20(40), 5572–5579
(2001)

5. Hiller, B., Bradtke, J., Balz, H., Rieder, H.: CyDAS: a cytogenetic data analysis
system. BioInformatics 21(7), 1282–1283 (2005), http://www.cydas.org

6. Höglund, M., Frigyesi, A., Säll, T., Gisselsson, D., Mitelman, F.: Statistical behav-
ior of complex cancer karyotypes. Genes, Chromosomes and Cancer 42(4), 327–341
(2005)

7. Korte, B., Vygen, J.: Combinatorial optimization: theory and algorithms. Springer,
Berlin (2002)

8. Mitelman, F. (ed.): ISCN: An International System for Human Cytogenetic Nomen-
clature. S. Karger, Basel (1995)

9. Mitelman, F., Johansson, B., Mertens, F. (eds.): Mitelman Database of Chromo-
some Aberrations in Cancer (2008),
http://cgap.nci.nih.gov/Chromosomes/Mitelman

10. Ozery-Flato, M., Shamir, R.: On the frequency of genome rearrangement events in
cancer karyotypes. In: The first annual RECOMB satellite workshop on computa-
tional cancer biology (2007)

11. Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and transpositions over finite
alphabets. SIAM J. Discret. Math. 19(1), 224–244 (2005)

12. Raphael, B.J., Volik, S., Collins, C., Pevzner, P.: Reconstructing tumor genome
architectures. Bioinformatics 27, 162–171 (2003)

http://www.cydas.org
http://cgap.nci.nih.gov/Chromosomes/Mitelman

On Computing the Breakpoint Reuse Rate in

Rearrangement Scenarios

Anne Bergeron1, Julia Mixtacki2, and Jens Stoye3

1 Dépt. d’informatique, Université du Québec à Montréal, Canada
bergeron.anne@uqam.ca

2 International NRW Graduate School in Bioinformatics and Genome Research,
Universität Bielefeld, Germany

julia.mixtacki@uni-bielefeld.de
3 Technische Fakultät, Universität Bielefeld, Germany

stoye@techfak.uni-bielefeld.de

Abstract. In the past years, many combinatorial arguments have been
made to support the theory that mammalian genome rearrangement sce-
narios rely heavily on breakpoint reuse. Different models of genome rear-
rangements have been suggested, from the classical set of operations that
include inversions, translocations, fusions and fissions, to more elaborate
models that include transpositions. Here we show that the current defi-
nition of breakpoint reuse rate is based on assumptions that are seldom
true for mammalian genomes, and propose a new approach to compute
this parameter. We explore the formal properties of this new measure
and apply these results to the human-mouse genome comparison. We
show that the reuse rate is intimately linked to a particular rearrange-
ment scenario, and that the reuse rate can vary from 0.89 to 1.51 for
scenarios of the same length that transform the mouse genome into the
human genome, where a rate of 1 indicates no reuse at all.

1 Introduction

There has been ample evidence, since the birth of modern genetics, that the
genomes of species have been often reshuffled, with large chunks of genetic ma-
terial being moved [13]. Rearrangements such as inversions within one chromo-
some, translocations, fusions, and fissions of chromosomes have been regularly
observed through the comparison of the genomes of close species. In the past
two decades it became possible to compare more distant species, and the prob-
lem of explaining how to transform one genome into another with a sequence of
rearrangements became a central problem of computational biology [11].

Computing the minimal number of inversions, translocations, fusions and fis-
sions necessary to transform one genome into another is a solved and well un-
derstood mathematical problem [4,5,6,8,14]. A sequence of rearrangements that
achieves this minimum is called a parsimonious sorting scenario.

The breakpoint reuse rate [1,9,12] measures how often regions of chromosomes
are broken in these rearrangement scenarios. This parameter has traditionally a

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 226–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 227

value between 1 and 2. Low or high values of the reuse rate have been used in
the literature to support different models of distributions of breaks along chro-
mosomes [9,12]. However, in this paper, we show that the reuse rate is extremely
sensitive to both genome representation, and the rearrangement model.

In [9], the reuse rate is defined as a function of the length of rearrangement
scenarios, but not the particular rearrangement operations used in it. Moreover,
its computation is based on the assumptions that the compared genomes have
the same number of chromosomes, and that they share the same set of telom-
ere markers. In order to compute the reuse rate in the comparison of genomes
that do not fit in this model, such as the mouse and human genomes, ‘empty’
chromosomes and additional telomere markers are added as necessary.

In this paper, we first argue that this approach necessarily yields abnormally
high values of breakpoint reuse, and we then suggest a new approach to compute
the reuse rate that uses all the information contained in a particular rearrange-
ment scenario. We give lower and upper bounds for this measure, demonstrating
that, depending on the particular scenario, a wide range of reuse rates can be
inferred for the same data-set. Finally we apply our results to the human-mouse
data-set studied in [9] and give a particular rearrangement scenario where the
lower bound is actually achieved.

2 Preliminaries

Whole genomes are compared by identifying homologous segments along their
DNA sequences, called blocks. These blocks can be relatively small, such as
gene coding sequences, or very large fragments of chromosomes. The order and
orientation of the blocks may vary in different genomes. In this paper, we assume
that the genomes are compared with sufficiently large blocks such that each
block occurs once and only once in each genome. For genomes that have linear
chromosomes, a simple representation is to list the blocks in each chromosome,
using minus signs to model relative orientation, such as in the following example:

Genome S: ◦ -2 -4 -5 -1 7 3 ◦ ◦ 8 6 10 9 11 12 ◦
Genome T : ◦ 1 2 3 4 5 ◦ ◦ 6 7 8 9 ◦ ◦ 10 11 12 ◦

Here, genome S has two chromosomes, and genome T has three. The unsigned
symbol ‘◦’ is used to mark ends of chromosomes. An adjacency in a genome is
a sequence of two consecutive blocks, or a block and a ‘◦’. For example, in the
above genomes, (−2 −4) is an adjacency of genome S, and (5 ◦) is an adjacency,
also called a telomere, of genome T . Since a whole chromosome can be flipped,
we always have (a b) = (−b −a), and (◦ a) = (−a ◦). Chromosomes can be
represented by the set of their adjacencies.

Two genomes are said to be co-tailed if they have the same set of telomeres.
Genomes that have only circular chromosomes are always co-tailed, since they
do not have telomeres. Co-tailed genomes whose chromosomes are all linear have
always the same number of chromosomes.

The adjacency graph of two genomes A and B is a graph whose vertices are
the adjacencies of A and B, respectively called A-vertices and B-vertices, and

228 A. Bergeron, J. Mixtacki, and J. Stoye

such that for each block b there is an edge between adjacency (b c) in genome A
and (b c′) in genome B, and an edge between (a b) in genome A, and (a′ b) in
genome B. For example, the adjacency graph of genomes S and T from above
is shown in Figure 1.

� � � � � � � � � � � � � �

(◦ -2) (-2 -4) (-4 -5) (-5 -1) (-1 7) (7 3) (3 ◦) (◦ 8) (8 6) (6 10) (10 9) (9 11) (11 12) (12 ◦)

� � � � � � � � � � � � � � �

(◦ 1) (1 2) (2 3) (3 4) (4 5) (5 ◦) (◦ 6) (6 7) (7 8) (8 9) (9 ◦) (◦ 10) (10 11)(11 12)(12 ◦)
�
�
�
�
�
��

�
�

�
�

�
�

�
�
�

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

��

�
�

�
�
�

��

�
�

�
�

�
��

�
�

�
�
�

��

�
�

�
�
�

��

Fig. 1. The adjacency graph of genomes S and T . The S-vertices are on the top of the
figure, and the T -vertices are on the bottom.

Since each vertex has at most two incident edges, the adjacency graph can
be decomposed into connected components that are either cycles or paths. We
classify paths as AA-paths, BB-paths and AB-paths depending on the type of
vertices, A or B, of its extremities. For example, the adjacency graph of genomes
S and T has the following connected components, described by the list of their
adjacencies in genome T :

Two cycles, [(1 2)(4 5)] and [(11 12)].
One SS-path, [(2 3)(7 8)].
Two TT -paths, [(◦ 1)(6 7)(◦ 10)] and [(◦ 6)(8 9)(10 11)(9 ◦)].
Two ST -paths, [(3 4)(5 ◦)] and [(12 ◦)].

When two genomes share an adjacency, such as (11 12) or (12 ◦) for genomes
S and T , then they belong to cycles of length 2 or paths of length 1 in the
adjacency graph. We have:

Proposition 1 ([3]). Two genomes are equal if and only if their adjacency
graph has only cycles of length 2 and paths of length 1.

We will refer to cycles of length more than 2, and paths of length more than 1,
as long cycles and paths.

A double-cut-and-join (DCJ) rearrangement operation [3,16] on genome A
acts on two adjacencies (a b) and (c d) to produce either (a d) and (c b), or
(a −c) and (−b d). When a, b, c and d are all blocks, the DCJ operation makes
two cuts in genome A; these correspond, for linear chromosomes, to inversions,
translocations, and circularizations when the two cuts act on the same chromo-
some and produce a circular chromosome. When one of a, b, c or d is a telomere,
the operation makes one cut; these are special cases of inversions, translocations
and circularizations that we will refer to as semi-operations. When there are two

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 229

telomeres, the operation makes no cut, and it corresponds to a fusion of chro-
mosomes, its inverse operation is a fission that makes one cut in a chromosome.

For a fixed set of rearrangement operations, the distance between genomes A
and B is the minimum number of operations needed to rearrange – or sort –
genome A into genome B. When all DCJ operations are allowed, we will denote
this distance by dDCJ(A, B). The DCJ distance is easily computed from the
adjacency graph [3]. It is given by:

dDCJ(A, B) = N − (C + I/2) (1)

where N is the number of blocks, C is the number of cycles, and I is the number
of AB-paths. For example, the DCJ distance between our genomes S and T is
given by 12 − (2 + 2/2) = 9.

Rearrangement operations that do not create circular chromosomes are called
HP operations, from the names of the authors of the first algorithm to compute
the distance between genomes using these operations [5]. The corresponding
distance is denoted by dHP (A, B). It is always greater or equal to the DCJ
distance, and the difference is generally very small in real data. For example,
the difference is 0 when the human and mouse genomes are compared with
281 blocks; and the difference is 1 when the human and chicken genomes are
compared with 586 blocks.

A rearrangement operation is sorting if it lowers the distance by 1, and a
sequence of sorting operations of length d(A, B) is called a parsimonious sorting
scenario. For the DCJ distance, it is easy to detect sorting operations since, by
the distance formula (1), any operation that increases the number of cycles by 1,
or the number of AB-paths by 2, is sorting. Note that no operation can modify
simultaneously those two parameters [3].

3 Breakpoint Reuse Rate

Rearrangement scenarios have been used in the past years to assess whether
some regions of chromosomes were particularly susceptible to break. The measure
used to infer the existence of these regions is called the breakpoint reuse rate.
Before formally defining this measure, it is important to note that most previous
definitions relied on the assumption that the compared genomes are co-tailed.
This assumption implies that genomes A and B have the same number of linear
chromosomes, and that there are no long paths. Since all adjacencies are in cycles
or short paths, it also implies that the adjacency graph has the same number of
A-vertices and B-vertices.

Let b be the number of A- or B-vertices that are in long cycles, then the
breakpoint reuse rate r for co-tailed genomes A and B is traditionally defined as:

r = 2d(A, B)/b.

This definition reflects the fact that, with co-tailed genomes, the only sorting
operations are inversions and translocations that must make two cuts in the
chromosomes since all adjacencies are in cycles.

230 A. Bergeron, J. Mixtacki, and J. Stoye

A well known result from sorting theory [2,5,7] asserts that at least � − 1 in-
versions or translocations are needed in order to sort a cycle of length 2�. We thus
have the following lower bound on the breakpoint reuse rate for co-tailed genomes:

Proposition 2. If the adjacency graph of genomes A and B has c long cycles
of total length Lc = 2�1 + . . . + 2�c and no long paths, then the breakpoint reuse
rate is at least

2 − 4c/Lc.

Proof. The number of A- or B-vertices that are in long cycles is b = �1+ . . .+�c =
Lc/2, and the distance d(A, B) ≥ (�1 − 1) + . . . + (�c − 1) = Lc/2 − c, implying
that

r = 2d(A, B)/b ≥ 2(Lc/2 − c)/(Lc/2)
= (Lc − 2c)/(Lc/2)
= 2 − 4c/Lc. ��

Proposition 2 establishes a link between the number of cycles and the breakpoint
reuse rate: a few long cycles imply a high reuse rate, and many shorter cycles
imply a low reuse rate. This fact is crucial in evaluating the breakpoint reuse of
genomes that have been artificially made co-tailed. The procedure eliminates all
paths in the adjacency graph by closing them into cycles [5,14]. Unfortunately,
this process transforms all rearrangement operations that make less than two
cuts into operations that makes two cuts. Clearly, this can lead to an overesti-
mation of reuse rates.

In order to obtain more realistic measures, we first extend the definition of
breakpoint reuse rate to arbitrary linear genomes.

Definition 1. Consider a rearrangement scenario that transforms genome A
into genome B. Let C be the total number of cuts made by the operations of the
scenario, and b the number of B-vertices that are in long cycles or paths, then
the breakpoint reuse rate r is defined by:

r = C/b.

Note that this definition corresponds to the traditional breakpoint reuse rate when
genomes are co-tailed. The reuse rate also depends on a particular scenario, and it
is not necessarily symmetric. Indeed, for example, if genome B differs from genome
A by a fusion of two chromosomes, then no cuts are necessary to transform A into
B, yielding a breakpoint reuse rate of 0, but one cut is necessary to transform B
into A, yielding a breakpoint reuse rate of 0.5. This example also shows that the
breakpoint reuse rate can be less than 1 for general genomes.

4 Bounding the Breakpoint Reuse Rate

Since the breakpoint reuse rate depends on a particular rearrangement scenario,
it is interesting to produce lower and upper bounds that are independent of a

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 231

particular parsimonious scenario. The existence of long paths in an adjacency
graph yields opportunities to choose operations that use less than two cuts.
On the other hand, long cycles often impose mandatory reuse, as we saw in
Proposition 2. For lower bounds, the strategy will thus be to avoid operations
that create long cycles in the adjacency graph, while the opposite strategy will
yield upper bounds. In Section 5, we will show that these bounds are effectively
reached with real data.

4.1 Lower Bounds

We already saw that the number of cuts necessary to sort a cycle of length 2� is
at least 2(�− 1), and there is no possibility to lower this number. In fact, in the
DCJ model this bound is tight, while in the HP model certain sets of paths or
cycles may require extra operations to be sorted [4,5].

The situation is very different for paths. Consider first an AB-path of length
2�+1 that begins with a telomere g1 of genome B and ends with a telomere g2�+1

of genome A, where we list all adjacencies of the path, with those of genome A
underlined:

[(◦ g1)(g2 g1)(g2 g3) . . . (g2� g2�−1)(g2� g2�+1)(◦ g2�+1)]

Consider the DCJ operation that acts on the adjacencies (g2� g2�−1) and
(◦ g2�+1) to produce the adjacency (g2� g2�+1) of genome B. This operation is
sorting since it creates a cycle of length 2, and shortens the AB-path by 2. It
also requires only one cut. We thus have:

Proposition 3. The minimum number of cuts necessary to sort an AB-path of
length 2� + 1 is �.

Proof. Applied iteratively, the above strategy clearly sorts the path with � cuts.
It thus remains to prove that it is impossible to reduce the number of cuts below
�. However, the path contains � adjacencies (g2i g2i−1) of A, 1 ≤ i ≤ �, that are
not adjacencies of B. Removing these requires at least � cuts. ��

Note that, in order to have a sorting sequence that minimizes the number of cuts,
it is necessary to create the adjacency of genome B that is next to the genome
A telomere. Any other sorting DCJ operation on the AB-path will increase the
number of cuts.

In the case of a BB-path of length 2�, we have more choices. Indeed, any path
of the form

[(◦ g1)(g2 g1)(g2 g3) . . . (g2�−2 g2�−1)(g2� g2�−1)(g2� ◦)]

can be cut anywhere between adjacencies of the form (g2k g2k−1). This is always
a sorting operation since it creates two new AB-paths of lengths 2k + 1 and
2� − (2k + 1). Using Proposition 3, we easily have:

Proposition 4. The minimum number of cuts necessary to sort a BB-path of
length 2� is �.

232 A. Bergeron, J. Mixtacki, and J. Stoye

Finally, AA-paths can be sorted with a minimum number of cuts using the
following procedure. Consider an AA-path of the form

[(g1 ◦)(g1 g2)(g3 g2) . . . (g2�−1 g2�−2)(g2�−1 g2�)(◦ g2�)].

Creating the adjacency (g1 g2) of genome B is possible by acting on the adja-
cencies (g1 ◦) and (g3 g2) of genome A. It is sorting since it creates a cycle, and
it requires only one cut. The same holds for the last adjacency of genome B,
(g2�−1 g2�). Note that if the length of the path is 2, then no cut is necessary and
we just do a fusion. Thus we have:

Proposition 5. The minimum number of cuts necessary to sort an AA-path of
length 2� is � − 1.

When the full spectrum of DCJ operations is allowed, it is always possible to
construct a sorting sequence that achieves the minimum number of cuts, but
this is not guaranteed when we restrict the operations to HP operations, as the
following example shows. Let genomes E and F be the following:

Genome E: ◦ -1 -2 3 ◦
Genome F : ◦ 1 2 3 ◦

The adjacency graph has two EF -paths, one of length 1, and one of length 5.
Thus the minimal number of cuts is 2. However, creating the adjacency 1 2 in
genome F requires the creation of a circular chromosome, which is forbidden
in the HP model. Thus the only allowable operation is the inversion of block
number 2, which requires two cuts, followed by the inversion of block number 1,
which requires one cut.

4.2 Upper Bounds

In order to compute the maximal number of cuts, we need to reverse the strategy
of the preceding section and create cycles as large as possible.

Since sorting operations that act on an AB-path must split the path into a
cycle and an AB-path, we choose to construct the largest possible cycle on a
path of length 2� + 1, splitting it in a path of length 1, and a cycle of length 2�.
We thus have:

Proposition 6. The maximum number of cuts necessary to sort an AB-path of
length 2� + 1 is 2� − 1.

A BB-path of length 2� can always be sorted with 2� − 1 cuts, by creating a
cycle of length 2�−2, requiring 2 cuts, and a path of length 2 that can be sorted
with a fission. When there are only AA-paths in the adjacency graph, then the
only sorting operations that can be applied to those must create a cycle, since
splitting the path always yields two AA-paths. Creating a cycle can be easily
done by a fusion of the two telomeres of genome A that are at the ends of the
path. This creates a cycle of length 2�, thus requiring 2(�−1) cuts. On the other

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 233

hand, it is possible to do better, in terms of maximizing the number of cuts, by
pairing AA-paths with BB-paths in the following sense.

Consider an AA-path of length 2�a, and a BB-path of length 2�b:

[(g1 ◦)(g1 g2)(g3 g2) . . . (g2�a−1 g2�a−2)(g2�a−1 g2�a)(◦ g2�a)]

[(◦ h1)(h2 h1)(h2 h3) . . . (h2�b−2 h2�b−1)(h2�b
h2�b−1)(h2�b

◦)]
The strategy is to act on the adjacencies (h2 h1) and (g1 ◦) of genome A to
produce (◦ h1) and (h2 −g1), resulting in two AB-paths, one of length 1 that
corresponds to the new common telomere (◦ h1), and the other of length 2�a +
2�b − 1. Using Proposition 6, the total number of cuts of this strategy would be
(2�a − 1) + (2�b − 1). We thus have:

Proposition 7. The maximum number of cuts necessary to sort a BB-path of
length 2� is 2�− 1. The maximum number of cuts necessary to sort an AA-path
of length 2� is 2�−1, when it can be paired with a BB-path, otherwise it is 2�−2.

Again, the maximal values given here are for the DCJ model. In the HP model,
the actual maxima could be a bit higher, but this generally represents a very
small fraction in real data. For the mouse and human genome presented in the
next section, this cost is null.

4.3 Bounds of the Reuse Rate

Using the various bounds on the number of cuts of the preceding sections, we
can now derive closed formulas for bounding the breakpoint reuse rate. We have:

Theorem 1. Suppose that the adjacency graph of two genomes A and B con-
tains c long cycles of total length Lc, m long AB-paths of total length Lm, p
AA-paths of total length Lp, and q BB-paths of total length Lq, then the number
of B-vertices that are in long cycles or paths is given by:

b = (Lc + Lm + Lp + Lq + m + 2q)/2

and the breakpoint resuse rate r for all parsimonious DCJ sorting scenarios is
bounded by

1 +
(Lc/2 − (2c + m + p + q))

b
≤ r ≤ 2 − 2c + 3m + p + 3q + δ(p − q)

b
,

where δ = 1 if p > q and 0 otherwise. Moreover there exist sorting scenarios that
meet these bounds.

Proof. We show the detailed contributions for long AB paths. All the three other
cases are treated similarly.

Suppose that there are m long AB-paths of lengths 2�1+1, 2�2+1, . . . , 2�m+1,
and let Lm be the sum of these lengths. Then the number of B-vertices that
belong to these paths is:

v =
m∑

i=1

(�i + 1) =
(Lm + m)

2
.

234 A. Bergeron, J. Mixtacki, and J. Stoye

By Proposition 3, the minimum number of cuts required to sort these paths is:

m∑
i=1

�i =
(Lm − m)

2
= v − m

and, by Proposition 6, the maximum number of cuts required is:

m∑
i=1

(2�i − 1) = Lm − 2m = 2v − 3m.

Adding similar contributions in B-vertices and cuts for cycles, AA-paths and
BB-paths, we can easily derive the bounds of the statement. The fact that there
exist sorting scenarios that meet the bounds is due to the fact that all DCJ
operations that were used to derive the minimal and maximal number of cuts
were sorting operations. ��

5 Reuse Rates in the Mouse-Human Whole Genome
Comparison

We now turn to test how these various computations behave with real data. We
used the same mouse-human data that was analyzed in [9] to prove that there
was extensive breakpoint reuse in mammalian evolution.

The data-set compares the order and orientation of 281 synteny blocks of the
mouse and human genome, and is given in Appendix 1. The mouse genome M
has 20 chromosomes, and the human genome H has 23. The adjacency graph
has the following characteristics (see Appendix 2):

c = 27 long cycles: 24 of them of length 4 and one of length 6, 8 and 10 each,
giving an overall length of Lc = 120,

s = 4 short MH-paths,
m = 12 long MH-paths: lengths ranging from 3 to 51,
p = 12 MM -paths: lengths ranging from 2 to 46,
q = 15 HH-paths: lengths ranging from 2 to 22.

By construction, the data-set has no short cycles since blocks adjacent in both
genomes are merged together. The number of adjacencies in the human genome
that are in long cycles or paths is b = 300 = 281 + 23 − 4, and the number in
the mouse genome is 297 = 281 + 20 − 4.

The HP distance, as computed by GRIMM [15] after closing all the paths
and adding empty chromosomes, is d(M, H) = 246. There are 300 adjacencies
in both the modified human and mouse genomes being in long cycles, yielding
a breakpoint reuse rate for these co-tailed genomes of 2 · 246/300 = 1.64.

The DCJ distance is also 246 = 281 − (27 + 16/2), since there are 27 cycles
and 4+12 = 16 MH-paths. Using the bounds of Theorem 1 to estimate the
breakpoint reuse rates of scenarios that transform the mouse into the human

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 235

genome according to the definition given in this paper, we get a reuse rate r
between 1 − 33/300 and 2 − 147/300, or:

0.89 ≤ r ≤ 1.51.

Compared to the value 1.64 obtained by forcing the genomes to be co-tailed, we
obtain strictly lower values of reuse rate for all possible sorting scenarios.

We also verified whether there exist scenarios using HP operations that attain
the minimum number of cuts. The answer is yes, and one such scenario can be
found in Appendix 3. This scenario uses the following operations:

26 inversions to sort 20 long cycles, making 52 cuts,
7 translocations to sort 7 long cycles, making 14 cuts,
15 fissions and 48 semi-operations to sort 15 HH paths, making 63 cuts,
12 fusions and 57 semi-operations to sort 12 MM paths, making 57 cuts,
81 semi-operations to sort 12 long MH paths, making 81 cuts.

6 Conclusion

In this paper, we generalized the notion of breakpoint reuse rate to genomes
that are not necessarily co-tailed. This new measure can be applied to circular
or linear genomes, or even to genomes that have both types of chromosomes.
We gave lower and upper bounds for the number of cuts in a rearrangement
scenario, yielding lower and upper bounds to the reuse rate of all possible par-
simonious scenarios that transform a genome into another. We also showed that
transforming genome data-sets in order to make them co-tailed can yield to an
overestimation of breakpoint reuse rate.

Acknowledgments

We kindly acknowledge Glenn Tesler for providing us the original data of [10] in
a user friendly format. J. S. would like to thank his children Ferdinand, Leopold
and Balduin for their help verifying the correctness of the mouse-human sorting
scenario by coding the genomes by integers written on 281 post-it notes. The re-
sulting video can be found at http://www.techfak.uni-bielefeld.de/∼stoye
rpublications/SvH.mov.

References

1. Alekseyev, M., Pevzner, P.A.: Are there rearrangement hotspots in the human
genome? PLoS Comput. Biol. 3(11), e209 (2007)

2. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM J.
Computing 25(2), 272–289 (1996)

3. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

http://www.techfak.uni-bielefeld.de/~stoye/rpublications/SvH_small.mov
http://www.techfak.uni-bielefeld.de/~stoye/rpublications/SvH_small.mov

236 A. Bergeron, J. Mixtacki, and J. Stoye

4. Bergeron, A., Mixtacki, J., Stoye, J.: HP distance via Double Cut and Join distance.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 56–68.
Springer, Heidelberg (2008)

5. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995)

6. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal
capping. Inf. Process. Lett. 104(1), 14–20 (2007)

7. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals with application to genome rearrangement. Algorithmica 13(1/2), 180–
210 (1995)

8. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangements. J. Bioinf.
Comput. Biol. 1(1), 71–94 (2003)

9. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13),
7672–7677 (2003)

10. Pevzner, P., Tesler, G.: Transforming men into mice: The Nadeau-Taylor chromo-
somal breakage model revisited. In: Proceedings of RECOMB 2003, pp. 247–256
(2003)

11. Sankoff, D.: Edit distances for genome comparison based on non-local operations.
In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS,
vol. 644, pp. 121–135. Springer, Heidelberg (1992)

12. Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rear-
rangement. J. Comput. Biol. 12(6), 812–821 (2005)

13. Sturtevant, A.H.: A crossover reducer in Drosophila melanogaster due to inversion
of a section of the third chromosome. Biologisches Zentralblatt 46(12), 697–702
(1926)

14. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J.
Comput. Syst. Sci. 65(3), 587–609 (2002)

15. Tesler, G.: GRIMM: Genome rearrangements web server. Bioinformatics 18(3),
492–493 (2002)

16. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 237

Appendix 1. The Dataset

The mouse genome:

1: ◦ -136 140 93 -95 -32 25 37 -38 39 -40 76 246 30 -29 33 -8 14 -11 10 -9 ◦
2: ◦ -161 162 -159 158 -157 156 -155 154 34 -35 36 -180 179 -178 -213 214 -24 28 259 -258 260 ◦
3: ◦ 141 139 -57 56 58 68 -201 55 -70 -7 -66 -5 ◦
4: ◦ 137 -142 -138 -97 146 153 148 145 4 -3 2 -1 ◦
5: ◦ 116 -115 120 124 18 62 -63 64 6 -267 195 -196 197 -113 -114 -119 105 118 200 ◦
6: ◦ 117 106 123 109 65 -67 -23 22 -21 -53 42 51 41 -167 -187 264 -188 189 ◦
7: ◦ 257 -255 254 -256 177 -210 212 211 -221 220 219 -218 -184 176 224 174 -175 -183 ◦
8: ◦ 250 205 126 -134 133 -132 -127 129 -71 130 -253 269 -69 -252 225 -226 227 12 -165 ◦
9: ◦ -185 251 110 -186 216 -215 -94 96 -217 -54 -48 -46 47 ◦

10: ◦ 101 -100 -98 99 27 -170 -266 -263 248 194 -193 192 -191 ◦
11: ◦ -268 112 -20 -85 -87 -80 84 231 -230 229 -228 -232 233 -234 237 -236 235 238 ◦
12: ◦ -17 16 -15 -121 -107 -122 207 209 -125 -108 ◦
13: ◦ -160 -13 -111 -89 88 -151 150 86 81 149 152 -72 -74 ◦
14: ◦ 50 -45 171 -49 43 -168 -172 208 206 198 -199 203 -128 -131 -202 204 ◦
15: ◦ -73 143 270 190 ◦
16: ◦ 223 -135 -265 59 61 -60 -52 261 ◦
17: ◦ -102 -103 104 -75 -222 91 262 -90 -92 44 -26 249 77 -240 19 239 ◦
18: ◦ 164 163 -166 243 -31 78 82 79 -83 241 245 242 -244 -247 ◦
19: ◦ 182 -181 -147 144 -169 173 ◦
X: ◦ -274 -275 273 281 -272 278 -279 280 -276 277 -271 ◦

The human genome:

1: ◦ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ◦
2: ◦ 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ◦
3: ◦ 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 ◦
4: ◦ 62 63 64 65 66 67 68 69 70 71 ◦
5: ◦ 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ◦
6: ◦ 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 ◦
7: ◦ 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 ◦
8: ◦ 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 ◦
9: ◦ 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 ◦

10: ◦ 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 ◦
11: ◦ 175 176 177 178 179 180 181 182 183 184 185 186 ◦
12: ◦ 187 188 189 190 191 192 193 194 195 196 197 ◦
13: ◦ 198 199 200 201 202 203 204 205 ◦
14: ◦ 206 207 208 209 210 ◦
15: ◦ 211 212 213 214 215 216 217 218 219 220 221 ◦
16: ◦ 222 223 224 225 226 227 ◦
17: ◦ 228 229 230 231 232 233 234 235 236 237 238 ◦
18: ◦ 239 240 241 242 243 244 245 246 247 ◦
19: ◦ 248 249 250 251 252 253 254 255 256 257 ◦
20: ◦ 258 259 260 ◦
21: ◦ 261 262 263 ◦
22: ◦ 264 265 266 267 268 269 270 ◦
X: ◦ 271 272 273 274 275 276 277 278 279 280 281 ◦

Appendix 2. Cycles and Paths

We list the cycles and paths by their sequences of adjacencies in the human
genome.

27 long cycles:

[(1 2) (2 3)]
[(9 10) (10 11)]
[(15 16) (16 17)]
[(21 22) (22 23)]
[(34 35) (35 36)]

238 A. Bergeron, J. Mixtacki, and J. Stoye

[(37 38) (38 39)]
[(62 63) (63 64)]
[(132 133) (133 134)]
[(155 156) (156 157)]
[(157 158) (158 159)]
[(178 179) (179 180)]
[(191 192) (192 193)]
[(195 196) (196 197)]
[(225 226) (226 227)]
[(228 229) (229 230)]
[(278 279) (279 280)]
[(79 80) (83 84)]
[(80 81) (86 87)]
[(93 94) (95 96)]
[(105 106) (117 118)]
[(106 107) (122 123)]
[(127 128) (131 132)]
[(138 139) (141 142)]
[(277 278) (271 272)]
[(218 219) (219 220) (220 221)]
[(273 274) (275 276) (276 277) (280 281)]
[(233 234) (235 236) (236 237) (234 235) (237 238)]

16 MH-paths:

[(◦ 1)]
[(238 ◦)]
[(260 ◦)]
[(◦ 271)]
[(270 ◦) (189 190)]
[(281 ◦) (273 273) (274 275)]
[(◦ 72) (74 75) (222 223)]
[(◦ 62) (18 19) (239 240)]
[(159 ◦) (162 163) (164 165)]
[(◦ 206) (208 209) (207 208) (171 172) (49 50)]
[(186 ◦) (110 111) (89 90) (92 93) (140 141)]
[(263 ◦) (265 266) (134 135) (126 127) (128 129) (203 204) (201 202) (68 69) (252 253) (268 269)]
[(◦ 105) (118 119) (199 200) (198 199) (202 203) (130 131) (253 254) (254 255) (256 257)]
[(61 ◦) (60 61) (59 60) (52 53) (41 42) (167 168) (172 173) (168 169) (43 44) (91 92) (261 262)]
[(197 ◦) (113 114) (119 120) (114 115) (112 113) (20 21) (53 54) (48 49) (42 43) (50 51) (45 46)
(46 47) (47 48)]
[(◦ 144) (146 147) (152 153) (72 73) (142 143) (137 138) (97 98) (98 99) (99 100) (26 27) (44 45)
(170 171) (27 28) (23 24) (66 67) (6 7) (267 268) (111 112) (12 13) (165 166) (242 243) (244 245)
(241 242) (245 246) (76 77) (249 250)]

12 MM -paths:

[(73 74)]
[(190 191)]
[(136 137)]
[(182 183) (181 182)]
[(115 116) (116 117)]
[(161 162) (160 161)]
[(100 101) (101 102) (103 104) (102 103)]
[(200 201) (54 55) (216 217) (215 216) (185 186)]
[(17 18) (124 125) (108 109) (123 124) (120 121) (107 108)]
[(204 205) (250 251) (184 185) (217 218) (96 97) (145 146) (3 4) (4 5)]
[(163 164) (166 167) (187 188) (188 189) (264 265) (58 59) (67 68) (65 66) (5 6) (64 65) (109 110)
(251 252) (224 225) (173 174)]
[(8 9) (33 34) (154 155) (153 154) (147 148) (180 181) (36 37) (25 26) (248 249) (193 194)
(194 195) (266 267) (169 170) (144 145) (148 149) (81 82) (78 79) (82 83) (240 241) (77 78)
(30 31) (29 30) (246 247)]

15 HH-paths:
[(◦ 187) (◦ 264)]
[(◦ 126) (205 ◦)]

On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios 239

[(◦ 41) (51 52) (◦ 261)]

[(14 ◦) (11 12) (227 ◦)]
[(40 ◦) (39 40) (75 76) (104 ◦)]
[(◦ 15) (121 122) (206 207) (◦ 198)]

[(◦ 222) (90 91) (262 263) (◦ 248)]

[(174 ◦) (175 176) (183 184) (◦ 175)]

[(125 ◦) (209 210) (211 212) (221 ◦)]
[(210 ◦) (177 178) (213 214) (212 213) (◦ 211)]

[(143 ◦) (269 270) (69 70) (7 8) (13 14) (◦ 160)]

[(87 ◦) (84 85) (230 231) (231 232) (232 233) (◦ 228)]

[(◦ 88) (88 89) (151 152) (149 150) (150 151) (85 86) (19 20) (◦ 239)]

[(247 ◦) (243 244) (31 32) (24 25) (214 215) (94 95) (32 33) (28 29) (258 259) (259 260) (◦ 258)]

[(71 ◦) (129 130) (70 71) (55 56) (56 57) (57 58) (139 140) (135 136) (223 224) (176 177)
(255 256) (257 ◦)]

Appendix 3. A Sorting Scenario with Minimum Number
of Cuts

We list the adjacencies of the human genome in the order they are repaired.

16 inversions of one block:

(1 2) and (2 3) (9 10) and (10 11) (15 16) and (16 17)
(21 22) and (22 23) (34 35) and (35 36) (37 38) and (38 39)
(62 63) and (63 64) (132 133) and (133 134) (155 156) and (156 157)

(157 158) and (158 159) (178 179) and (179 180) (191 192) and (192 193)
(195 196) and (196 197) (225 226) and (226 227) (228 229) and (229 230)
(278 279) and (279 280)

6 inversions to sort two cycles:

(218 219) (219 220) and (220 221) (233 234) (235 236)
(236 237) (234 235) and (237 238)

4 inversions to sort the two interleaving cycles of chromosome X:

(273 274) (275 276) (277 278) and (271 272) (276 277) and (280 281)

7 translocations that repair two adjacencies:

(79 80) and (83 84) (80 81) and (86 87) (93 94) and (95 96)
(105 106) and (117 118) (106 107) and (122 123) (127 128) and (131 132)
(138 139) and (141 142)

15 fissions:

(◦ 126) and (205 ◦) (◦ 187) and (◦ 264) (14 ◦) (◦ 15) (40 ◦) (◦ 41) (71 ◦) (◦ 88)
(143 ◦) (174 ◦) (◦ 248) (210 ◦) (221 ◦) (◦ 228) (◦ 258)

186 non-degenerate semi-operations:

240 A. Bergeron, J. Mixtacki, and J. Stoye

(189 190) (164 165) (162 163) (239 240) (18 19) (49 50) (140 141) (256 257) (254 255)
(261 262) (91 92) (47 48) (46 47) (45 46) (50 51) (249 250) (11 12) (39 40)
(181 182) (115 116) (161 162) (100 101) (101 102) (103 104) (200 201) (17 18) (204 205)
(250 251) (184 185) (163 164) (274 275) (272 273) (8 9) (129 130) (70 71) (55 56)
(56 57) (57 58) (139 140) (135 136) (223 224) (176 177) (255 256) (262 263) (88 89)
(151 152) (149 150) (150 151) (232 233) (231 232) (230 231) (84 85) (85 86) (19 20)
(177 178) (213 214) (212 213) (211 212) (209 210) (259 260) (258 259) (28 29) (32 33)
(94 95) (214 215) (24 25) (31 32) (243 244) (75 76) (51 52) (171 172) (207 208)
(208 209) (121 122) (206 207) (175 176) (183 184) (269 270) (69 70) (7 8) (13 14)
(92 93) (89 90) (110 111) (90 91) (222 223) (74 75) (253 254) (43 44) (168 169)
(172 173) (167 168) (41 42) (52 53) (59 60) (60 61) (42 43) (48 49) (53 54)
(20 21) (112 113) (114 115) (119 120) (113 114) (268 269) (252 253) (68 69) (201 202)
(203 204) (128 129) (126 127) (134 135) (265 266) (130 131) (202 203) (198 199) (199 200)
(118 119) (76 77) (245 246) (241 242) (244 245) (242 243) (165 166) (12 13) (111 112)
(267 268) (6 7) (66 67) (23 24) (27 28) (170 171) (44 45) (26 27) (99 100)
(98 99) (97 98) (137 138) (142 143) (72 73) (152 153) (146 147) (33 34) (154 155)
(153 154) (147 148) (180 181) (36 37) (25 26) (248 249) (193 194) (194 195) (266 267)
(169 170) (144 145) (148 149) (54 55) (216 217) (215 216) (217 218) (96 97) (145 146)
(3 4) (124 125) (108 109) (123 124) (120 121) (246 247) (29 30) (30 31) (77 78)
(240 241) (82 83) (78 79) (166 167) (187 188) (188 189) (264 265) (58 59) (67 68)
(65 66) (5 6) (64 65) (109 110) (251 252) (224 225)

12 fusions:

(182 183) (73 74) (190 191) (136 137) (116 117) (160 161) (102 103) (185 186) (107 108)
(4 5) (81 82) (173 174)

Hurdles Hardly Have to Be Heeded

Krister M. Swenson, Yu Lin, Vaibhav Rajan, and Bernard M.E. Moret

Laboratory for Computational Biology and Bioinformatics
EPFL (Ecole Polytechnique Fédérale de Lausanne)

and Swiss Institute of Bioinformatics
Lausanne, Switzerland

{krister.swenson,yu.lin,vaibhav.rajan,bernard.moret}@epfl.ch

Abstract. As data about genomic architecture accumulates, genomic rearrange-
ments have attracted increasing attention. One of the main rearrangement mech-
anisms, inversions (also called reversals), was characterized by Hannenhalli and
Pevzner and this characterization in turn extended by various authors. The char-
acterization relies on the concepts of breakpoints, cycles, and obstructions col-
orfully named hurdles and fortresses. In this paper, we study the probability of
generating a hurdle in the process of sorting a permutation if one does not take
special precautions to avoid them (as in a randomized algorithm, for instance).
To do this we revisit and extend the work of Caprara and of Bergeron by provid-
ing simple and exact characterizations of the probability of encountering a hurdle
in a random permutation. Using similar methods we, for the first time, find an
asymptotically tight analysis of the probability that a fortress exists in a random
permutation.

1 Introduction

The advent of high-throughput techniques in genomics has led to the rapid accumulation
of data about the genomic architecture of large numbers of species. As biologists study
these genomes, they are finding that genomic rearrangements, which move single genes
or blocks of contiguous genes around the genome, are relatively common features: en-
tire blocks of one chromosome can be found in another chromosome in another species.
The earliest findings of this type go back to the pioneering work of Sturtevant on the
fruit fly [10,11]; but it was the advent of large-scale sequencing that moved this aspect
of evolution to the forefront of genomics.

The best documented type of rearrangement is the inversion (also called reversal),
in which a block of consecutive genes is removed and put back in (the same) place in
the opposite orientation (on the other strand, as it were). The most fundamental com-
putational question then becomes: given two genomes, how efficiently can such an op-
eration as inversion transform one genome into the other? Since an inversion does not
affect gene content (the block is neither shortened nor lengthened by the operation), it
makes sense to view these operations as being applied to a signed permutation of the
set {1,2, . . . ,n}.

Hannenhalli and Pevzner [6,7] showed how to represent a signed permutation of n
elements as a breakpoint graph (also called, more poetically, a diagram of reality and

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 241–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 K.M. Swenson et al.

desire), which is a graph on 2n + 2 vertices (2 vertices per element of the permutation
to distinguish signs, plus 2 vertices that denote the extremities of the permutation) with
colored edges, where edges of one color represents the adjacencies in one permuta-
tion and edges of the other color those in the other permutation. In such a graph, every
vertex has indegree 2 and outdegree 2 and so the graph has a unique decomposition
into cycles of even length, where the edges of each cycle alternate in color. Hannen-
halli and Pevzner introduced the notions of hurdles and fortresses and proved that the
minimum number of inversions needed to convert one permutation into the other (also
called “sorting” a permutation) is given by the number of elements of the permutation
plus 1, minus the number of cycles, plus the number of hurdles, and plus 1 if a fortress is
present. Caprara [5] showed that hurdles were a rare feature in a random signed permu-
tation. Bergeron [2] provided an alternate characterization in terms of framed common
intervals and went on to show that unsafe inversions, that is, inversions that could create
new obstructions such as hurdles, were rare [3] when restricted to adjacency creating
inversions. Kaplan and Verbin [8] capitalized on these two findings and proposed a
randomized algorithm that sorts a signed permutation without paying heed to unsafe
inversions, finding that, in practice, the algorithm hardly needed any restarts to provide
a proper sorting sequence of inversions, although they could not prove that it is in fact
a proper Las Vegas algorithm.

In this paper, we extend Bergeron’s result about the possibility of creating a hurdle
by doing an inversion. Her result is limited to inversions that create new adjacencies, but
these are in the minority: in a permutation without hurdles, any inversion that increases
the number of cycles in the breakpoint graph is a candidate. Using Sankoff’s random-
ness hypothesis [9], we show that the probability that any cycle-splitting inversion is
unsafe is Θ(n−2). We then revisit Caprara’s complex proof and provide a simple proof,
based on the framed intervals introduced by Bergeron, that the probability that a random
signed permutation on n elements contains a hurdle is Θ(n−2). Finally, we show that
this approach can be extended to prove that the probability such a permutation contains
a fortress is Θ(n−15). Our results are elaborated for circular permutations, but simple
(and by now standard) adaptations show that they also hold for linear permutations.

Framed common intervals considerably simplify our proofs; indeed, our proofs for
hurdles and fortresses depend mostly on the relative scarcity of framed intervals. Our
results add credence to the conjecture made by Kaplan and Verbin that their random-
ized algorithm is a Las Vegas algorithm, i.e., that it returns a sorting sequence with
high probability after a constant number of restarts. Indeed, because our results suggest
that the probability of failure of their algorithm is O(1/n) when working on a permu-
tation of n elements, whereas any fixed constant 0 < ε < 1 would suffice, one could
conceive taking advantage of that gap by designing an algorithm that runs faster by
using a stochastic, rather than deterministic, data structure, yet remains a Las Vegas al-
gorithm. Indeed, how fast a signed permutation can be sorted by inversions remains an
open question: while we have an optimal linear-time algorithm to compute the number
of inversions needed [1], computing one optimal sorting sequence takes subquadratic
time—O(n

√
n logn), either stochastically with the algorithm of Kaplan and Verbin or

deterministically with the similar approach of Tannier and Sagot [12].

Hurdles Hardly Have to Be Heeded 243

2 Preliminaries

Let Σn denote the set of signed permutations over n elements; a permutation π in this set
will be written as π = (π1π2 . . .πn), where each element πi is a signed integer and the
absolute values of these elements are all distinct and form the set {1,2, . . . ,n}. Given
such a π, a pair of elements (πi,πi+1) or (πn,π1) is called an adjacency whenever we
have πi+1 − πi = 1 (for 1 ≤ i ≤ n − 1) or π1 − πn = 1; otherwise, this pair is called a
breakpoint. We shall use Σ0

n to denote the set of permutations in which every permu-
tation is entirely devoid of adjacencies. Bergeron et al [3] proved the following result
about |Σ0

n|.
Lemma 1. [3] For all n > 1, 1

2 |Σn| < |Σ0
n| < |Σn|.

For any signed permutation π and the identity I = (12 . . .n), we can construct the break-
point graph for the pair (π, I). Since there is one-to-one mapping between π and the
corresponding breakpoint graph for (π, I), we identify the second with the first and so
write that π contains cycles, hurdles, or fortresses if the breakpoint graph for (π, I) does;
similarly, we will speak of other properties of a permutation π that are in fact defined
only when π is compared to the identity permutation.

A framed common interval (FCI) of a permutation (made circular by considering the
first and last elements as being adjacent) is a substring of the permutation, as1s2 . . .skb
or -bs1s2 . . . sk-a so that

– for each i, 1 ≤ i ≤ k, |a| < |si| < |b|, and
– for each l, |a| < l < |b|, there exists a j with |s j| = l.

So the substring s1s2 . . . sk is a signed permutation of the integers that are greater than a
and less than b; a and b form the frame. The framed interval is said to be common, in that
it also exists, in its canonical form, +a+(a+1)+(a+2) . . .+b, in the identity permutation.
Framed intervals can be nested. The span of an FCI is the number of elements between
a and b, plus two, or b − a + 1. A component is comprised of all elements inside a
framed interval that are not inside any nested subinterval, plus the frame elements. A
bad component is a component whose elements all have the same sign.

In a circular permutation, a bad component A separates bad components B and
C if and only if every substring containing an element of B and an element of C
also has an element of A in it. We say that A protects B if A separates B from all
other bad components. A superhurdle is a bad component that is protected by an-
other bad component. A fortress is a permutation that has an odd number (larger than
1) of hurdles, all of which are superhurdles. The smallest superhurdles are equiva-
lent to intervals f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) or the reverse
f ′ = −(i+6)−(i+1)−(i+5)−(i+3)−(i+4)−(i+2)−(i). A hurdle is a bad component that
is not a superhurdle.

We will use the following useful facts about FCIs; all but fact 3 follow immediately
from the definitions.

1. A bad component indicates the existence of a hurdle.
2. To every hurdle can be assigned a unique bad component.
3. FCIs never overlap by more than two elements [4].
4. An interval shorter than 4 elements cannot be bad.

244 K.M. Swenson et al.

3 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizations in Θ() terms of the probability
that a hurdle or fortress is found in a signed permutation selected uniformly at random.
Each proof has two parts, an upper bound and a lower bound; for readability, we phrase
each part as a lemma and develop it independently. We begin with hurdles; the charac-
terization for these structures was already known, but the original proof of Caprara [5]
is very complex.

Theorem 1. The probability that a random signed permutation on n elements contains
a hurdle is Θ(n−2).

Lemma 2 (Upper bound for shorter than n − 1). The probability that a random
signed permutation on n elements contains a hurdle spanning no more than n− 2 ele-
ments is O(n−2).

Proof. Fact 4 tells us that we need only consider intervals of at least four elements. Call
F≤n−2 the event that a FCI spanning no more than n−2 and no less than four elements
exists. Call F(i)≤n−2 the event that such an FCI exists with a left endpoint at πi. We
thus have F≤n−2 = 1 if and only if there exists an i, 1 ≤ i ≤ n, with F(i)≤n−2 = 1. Note
that F(i)≤n−2 = 1 implies either πi = a or πi = −b for some FCI. Thus we can write

Pr
(
F(i)≤n−2 = 1

)
≤

n−2

∑
l=4

1
2(n−1)

(
n−2
l −2

)−1

(1)

since 1
2(n−1) is the probability the right endpoint matches the left endpoint (πl is -a or b

if πi is -b or a respectively) of an interval of span l and
(n−2

l−2

)−1
is the probability that

the appropriate elements are inside the frame. We can bound the probability from (1) as

Pr
(
F(i)≤n−2 = 1

)
≤ 1

2(n−1)

n−4

∑
l=2

(
n−2

l

)−1

≤ 1
n−1

�n/2�−1

∑
l=2

(
n−2

l

)−1

≤ 1
n−1

(√
n

∑
l=2

(l
n−2

)l
+

�n/2�−1

∑
l=

√
n+1

(
n−2

l

)−1)
(2)

where the second term is no greater than

�n/2�−1

∑
l=

√
n+1

(
n−2

l

)−1

≤
�n/2�−1

∑
l=

√
n+1

(1
2

)√
n+1

∈ O(1/n2) (3)

and the first term can be simplified

Hurdles Hardly Have to Be Heeded 245

√
n

∑
l=2

(l
n−2

)l
=

4

∑
l=2

(l
n−2

)l
+

√
n

∑
l=5

(l
n−2

)l

≤
4

∑
l=2

(l
n−2

)l
+

√
n

∑
l=5

(n
n−2

√
n

n

)5

∈ O
(

3× 16
(n−2)2 +

√
n n−5/2

)
= O(n−2). (4)

To compute Pr(F≤n−2) we use the union bound on Pr(
⋃n

i=1 F(i)≤n−2). This removes
the factor of 1

n−1 from (2) yielding just the sum of (4) and (3) which is O(n−2). The
probability of observing a hurdle in some subsequence of a permutation can be no
greater than the probability of observing a FCI (by fact 2). Thus we know the probability
of observing a hurdle that spans no more than n−2 elements is O(n−2).

We now proceed to bound the probability of a hurdle that spans n − 1 or n elements.
Call intervals with such spans n-intervals. For a bad component spanning n elements
with a = i, there is only a single b = (i − 1) that must be a’s left neighbor (in the
circular order), and for a hurdle spanning n−1 elements with a = i, there are only two
configurations (“+(i-2) +(i-1) +i” and its counterpart “+(i-2) −(i-1) +i”) that will create a
framed interval. Thus the probability that we see an n-interval with a particular a = i is
O(1/n) and the expected number of n-intervals in a permutation is O(1).

We now use the fact that a bad component is comprised of elements with all the same
sign. Thus the probability that an n-interval uses all the elements in its span (i.e., there
exist no nested subintervals) is O(2−n). Call a bad component that does not use all of
the elements in its span (i.e., there must exist nested subintervals) a fragmented interval.

Lemma 3 (Upper bound for n-intervals). The probability that a fragmented n-interval
is a hurdle is O(n−2).

Proof. We divide the analysis into three cases where the fragment-causing subinterval
is of span

1. n−1,
2. 4 through n−2, and
3. less than 4.

The existence of a subinterval of span n− 1 precludes the possibility of the frame el-
ements from the larger n-interval being in the same component, so there cannot be a
hurdle using this frame. We have already established that Pr(F≤n−2) is O(n−2). Thus
we turn to the third case. If an interval is bad, then the frame elements of any fragment-
ing subinterval must have the same sign as the frame elements of the larger one. If we
view each such subinterval and each element not included in such an interval as single
characters, we know that there must be at least n/3 signed characters. Since the signs
of the characters are independent, the probability that all characters have the same sign
is 1/2O(n) and is thus negligible.

Thus the probability of a bad n-interval is O(n−2). Now using fact 4 we conclude that
the probability of existence of a hurdle in a random signed permutation on n elements
is O(n−2).

246 K.M. Swenson et al.

Lemma 4 (Lower bound). The probability that a signed permutation on n elements
has a hurdle with a span of four elements is Ω(n−2).

Proof. Call hk the hurdle with span four that starts with element 4k + 1. So the subse-
quence that corresponds to hk must be +(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or −(4k +
4)−(4k + 2)−(4k + 3)−(4k + 1). We can count the number of permutations with h0, for
instance. The four elements of h0 are contiguous in 4!(n−3)!2n permutations of length
n. In c = 2/(4!24) of those cases, the contiguous elements form a hurdle, so the total
proportion of permutations with h0 is

c
4!(n−3)!2n

n!2n ∈ Ω
(1

n3

)
.

Similarly, the proportion of permutations that have both h0 and h1 is

F2 = c2 (4!)2(n−6)!2n

n!2n ∈ O
(1

n6

)
and, therefore, the proportion of permutations that have at least one of h0 or h1 is

2× c
4!(n−3)!2n

n!2n −F2. (5)

We generalize (5) to count the proportion of permutations with at least one of the hurdles
h0,h1,. . . ,h�n/4 ; this proportion is at least⌊

n
4

⌋
× c

4!(n−3)!2n

n!2n −
(
�n/4

2

)
F2 (6)

which is Ω(n−2) since the second term is O(n−4).

Now we turn to the much rarer fortresses.

Theorem 2. The probability that a random signed permutation on n elements includes
a fortress is Θ(n−15).

Lemma 5 (Upper bound). The probability that a random signed permutation on n
elements includes a fortress is O(n−15).

Proof. We bound the probability that at least three superhurdles occur in a random
permutation by bounding the probability that three non-overlapping bad components of
length seven exist. We divide the analysis into three cases depending on the number l
of elements spanned by a bad component.

1. For one of the three FCIs we have n−14 ≤ l ≤ n−11.
2. For one of the three FCIs we have 17 ≤ l ≤ n−15.
3. For all FCIs we have 7 ≤ l < 17.

Hurdles Hardly Have to Be Heeded 247

As we did in Lemma 2 (equation 1), we can bound the probability that we get an FCI
of length l starting at a particular position by

Pr
(
Fl = 1

)
≤ 1

2(n−1)

(
n−2
l −2

)−1

. (7)

In the first case the probability that the FCI is a superhurdle is O(n−11 ·2−n) if the FCI
is not fragmented and O(n−15) if it is (using the same technique as for the proof of
Lemma 3). In the second case the probability is at most

n
n−15

∑
l=17

Fl = n
n−17

∑
k=15

1
2(n−1)

(
n−2

k

)−1

which, by the same reasoning used for equation 2 to derive O(n−2), is O(n−15). Thus
the first two cases both give us an upper bound of O(n−15).

Fact 3 tells us that any pair of FCIs can overlap only on their endpoints. Thus, if we
first consider the probability of finding a smallest FCI, we know that no other FCI will
have an endpoint inside it. So the probability of having a second FCI, conditioned on
having a smaller first one, is dependent only on the size of the first. The same reasoning
extends to the probability of having a third conditioned on having two smaller FCIs.
Since each of the three FCIs spans less than seventeen elements, the probability of each
FCI appearing is at most n∑17

l=7 Fk = O(n−5), and the probability of there being at least
three of them is O(n−15).

We now turn to the lower bound. Consider the probability of the existence, in a random
permutation, of a permutation with exactly three superhurdles spanning seven elements
each. A lower bound on this probability is a lower bound on the probability of existence
of a fortress in a random permutation.

Lemma 6 (Lower bound). The probability that a random signed permutation on n
elements includes a fortress is Ω(n−15).

Proof. Denote by F3,7(n) the number of permutations on n elements with exactly 3 su-
perhurdles spanning 7 elements each. To create such a permutation, choose a permuta-
tion of length n−18 (with zero adjacencies and without hurdles), select three elements,
and extend each of these three elements to a superhurdle, renaming the elements of the
permutation as needed. That is, replace element +i by the framed interval of length
7 f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) and rename all the elements
with magnitude j to have magnitude j +6 (for those with | j| > |i|). After extending the
three selected elements, we get a permutation on n elements where there are exactly 3
superhurdles each spanning 7 elements.

From Lemma 1 and the results about the rarity of hurdles from the previous section,
we have

F3,7(n) >
(n−18)!2n−18

2

(
1−O(n−2)

)(n−18
3

)

248 K.M. Swenson et al.

where (n−18)!2n−18

2 (1 − O(n−2)) is a lower bound for the number of permutations of
length n−18 (with zero adjacencies and without hurdles) and

(n−18
3

)
is the number of

ways to choose the elements for extension. Therefore we have

F3,7(n)
n!2n >

(n−18)!2n−18

2

(
1−O(n−2)

)(n−18
3

)
1

n!2n

∈ Ω(n−15) (8)

4 On the Proportion of Unsafe Cycle-Splitting Inversions

Denote the two vertices representing a permutation element πi in the breakpoint graph
by π−

i and π+
i (π◦ can denote either). Think of embedding the breakpoint graph on a

circle as follows: we place all 2n vertices on the circle so that:

1. π+
i and π−

i are adjacent on the circle,
2. π−

i is clockwise-adjacent to π+
i if and only if πi is positive, and

3. a π◦
i is adjacent to a π◦

i+1 if and only if πi and πi+1 are adjacent in π.

For two vertices v1 = π◦
i and v2 = π◦

j (i �= j) that are adjacent on the circle, add the edge
(v1,v2)—a reality edge (also called a black edge); also add edges (π+

i ,π−
i+1) for all i

and (π+
n ,π−

1)—the desire edges (also called gray edges). The breakpoint graph is just
as described in [6], but its embedding clarifies the notion of orientation of edges, which
plays a crucial role in our study of unsafe inversions.

In the breakpoint graph two reality edges on the same cycle are convergent if a traver-
sal of their cycle visits each edge in the same direction in the circular embedding; oth-
erwise they are divergent. Any inversion that acts on a pair of divergent reality edges
splits the cycle to which the edges belong; conversely, no inversion that acts on a pair of
convergent reality edges splits their common cycle. (An inversion that acts upon a pair
of reality edges in two different cycles simply merges the two cycles.)

An inversion can be denoted by the set of elements in the permutation that it rear-
range; for instance, we can write r = {πi,πi+1, . . . ,π j}. The permutation obtained by
applying a inversion r on a permutation π is denoted by rπ. Thus, using the same r,
we have rπ = (π1 . . .πi−1−π j . . . −πiπ j+1 . . .πn). We call a pair (π,r) unsafe if π does not
contain a hurdle but rπ does. A pair (π,r) is oriented if rπ contains more adjacencies
than π does. A pair (π,r) is cycle-splitting if rπ contains more cycles than π does. (When
π is implied from the context, we call r unsafe, oriented, or cycle-splitting, respectively,
without referring to π.) Note that every oriented inversion is a cycle-splitting inversion.
A inversion r on a permutation π is a sorting inversion if d(rπ) = d(π)−1.

Let π be a random permutation without hurdles and r a randomly chosen oriented
inversion on π. Bergeron et al. [3] proved that the probability that the pair (π,r) is unsafe
is O(n−2). However, not every sorting inversion for a permutation without hurdles is
necessarily an oriented inversion; on the other hand, it is necessarily a cycle-splitting
inversion. The result in [3] thus applies only to a small fraction of all sorting inversions.
We now proceed to study all inversions that can increase the cycle count. We show
that, under Sankoff’s randomness hypothesis (stated below), the proportion of these
inversions that are unsafe is O(n−2).

Hurdles Hardly Have to Be Heeded 249

In [9], Sankoff builds graphs by effectively fixing desire edges, one to each vertex,
and then randomly connecting each vertex to exactly one reality edge. We choose to
equivalently view this process as randomly linking each vertex, with reality edges al-
ready fixed, by exactly one desire edge. It should be noted that the orientation of a
reality edge in the breakpoint graph is not independent of the orientation of the other
reality edges, but for this random generation process where they are independent, we
may generate a graph that does not correspond to a permutation. Sankoff [9] proposed
a Randomness Hypothesis in this regard; it states that the probabilistic structure of the
breakpoint graph is asymptotically independent of whether or not the generated graph
is consistent with a permutation. In the randomly constructed graphs, every reality edge
induces a direction independently and each direction has a probability of 1

2 , so the
expected number of reality edges with one orientation equals that with the other orien-
tation; our own experiments support the randomness hypothesis in this respect, as illus-
trated in Figure 1, which shows the number of edges inducing a clockwise orientation

200 220 240 260 280 300
0

50

100

150

200

of reality edges inducing a clockwise direction

of

 o
cc

ur
re

nc
es

Fig. 1. The number of edges inducing a clockwise direction in cycles of length 500, taken from
random permutations. Black dots are the expected values from the binomial distribution while
white bars are experimental values.

on a cycle of length 500 from 2000 random permutations of length 750. Observations
(the vertical bars) match a binomial distribution (the black dots). This match is impor-
tant inasmuch as it is simpler to analyze a random breakpoint graph than a random
signed permutation.

The number of cycle-splitting inversions in a permutation π equals the number of
pairs of divergent same-cycle reality edges in the breakpoint graph for π. Consider
a cycle containing L reality edges and let k of them share the same orientation; the
number of pairs of divergent reality edges in this cycle is then k(L−k). Thus, under the
randomness hypothesis, the expected number of pairs of divergent reality edges for a
cycle containing L reality edges is given by

250 K.M. Swenson et al.

L

∑
k=0

(
L
k

)(1
2

)L
k(L− k) =

1
4

L(L−1).

The maximum number of pairs of divergent reality edges for a cycle with L reality
edges is 1

4 L2. Thus at least half the number of cycles with L reality edges have at least
1
4 L2 − 1

2 L pairs of divergent reality edges (for L > 2).
Using the randomness hypothesis, Sankoff et al. [9] have shown that in a random

breakpoint graph (with 2n vertices) the expected number of reality edges in the largest
cycle is 2

3 n. Since the maximum number of reality edges in the largest cycle is n, at
least half the random breakpoint graphs have a cycle with at least 1

3 n reality edges. So,
for all random breakpoint graphs, at least 1

4 of them have at least 1
36 n2 − 1

6 n pairs of
divergent reality edges. Hence, under the randomness hypothesis, the number of pairs
(π,r), where r is a cycle-splitting inversion in π, is Θ(n2)|Σn|.

Let Hn ∈ Σn be the subset of permutations over n elements where each permutation
contains one or more hurdles. Given a permutation h ∈ Hn, at most

(n
2

)
pairs of (π,r)

can yield this specific h. Since |Hn| = Θ(1
n2 |Σn|), the number of unsafe pairs (π,r) is

O(|Σn|) and thus so is the number of unsafe cycle-splitting pairs. Therefore, under the
randomness hypothesis, for a random permutation π ∈ Σn, if r is a cycle-splitting inver-
sion on π, the probability that r is unsafe is O(n−2). Unlike the result from Bergeron
about oriented inversions, this result is conditioned on Sankoff’s randomness hypothe-
sis, which remains to be proved. All experimental work to date appears to confirm the
correctness of that hypothesis; and under this hypothesis, our result generalizes that of
Bergeron from a small fraction of candidate inversions to all cycle-splitting inversions.

If unsafe inversions are that rare, then a randomized algorithm for sorting by inver-
sions could pick any cycle-splitting inversion (i.e., any pair of divergent reality edges)
and use it as the next step in a sorting sequence; since the probability of failure is
Θ(n−2) at each step (modulo some dependencies as one progresses through the steps),
the overall probability of failure at completion (at most n steps) is O(1/n), which is very
small. This finding is in accord with the experimental results of Kaplan and Verbin [8],
whose algorithm proceeds in just this fashion. Moreover, as the probability of failure
is so small, it may be possible to devise a faster randomized algorithm that does not
maintain an exact record of all reality edges and cycles (the major time expense in the
current algorithms); such an algorithm would suffer from additional errors (e.g., using
a pair of edges that is not divergent), but would remain usable as long as the probability
of error at each step remained O(1/n) and bounded by a fixed constant overall.

5 Conclusions

We have both extended and simplified results of Bergeron and Caprara on the expected
structure of signed permutations and their behavior under inversions. These extensions
demonstrate the mathematical power of the framed common interval framework devel-
oped by Bergeron and the potential uses of the randomness hypothesis proposed by
Sankoff to bind the asymptotic properties of valid and randomized breakpoint graphs.
Our results confirm the evasive nature of hurdles (and, even more strongly, of fortresses);

Hurdles Hardly Have to Be Heeded 251

indeed, these structures are both so rare and, more importantly, so hard to create acciden-
tally that, as our title suggests, they can be safely ignored. (Of course, if a permutation
does have a hurdle, that hurdle must be handled if we are to sort the permutation; but
handling hurdles takes only linear time—the cost comes when attempting to avoid cre-
ating a new one, i.e., when testing cycle-splitting inversions for safeness.) Moreover,
the possibility of not testing candidate inversions for safeness suggests that further in-
formation could be discarded for the sake of speed without harming the convergence
properties of a randomized algorithm, thereby potentially opening a new path for faster
sorting by inversions.

References

1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion dis-
tance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–
491 (2001); A preliminary version appeared in WADS 2001, pp. 365–376

2. Bergeron, A.: A very elementary presentation of the Hannenhalli–Pevzner theory. Discrete
Applied Mathematics 146(2), 134–145 (2005)

3. Bergeron, A., Chauve, C., Hartman, T., Saint-Onge, K.: On the properties of sequences of
reversals that sort a signed permutation. In: JOBIM, 99–108 (June 2002)

4. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to
genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp.
68–79. Springer, Heidelberg (2003)

5. Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J.
Combin. Optimization 3, 149–182 (1999)

6. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Com-
put. (STOC 1995), pp. 178–189. ACM Press, New York (1995)

7. Hannenhalli, S., Pevzner, P.A.: Transforming mice into men (polynomial algorithm for ge-
nomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci.
(FOCS 1995), pp. 581–592. IEEE Computer Society Press, Piscataway (1995)

8. Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting
signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.)
CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)

9. Sankoff, D., Haque, L.: The distribution of genomic distance between random genomes. J.
Comput. Biol. 13(5), 1005–1012 (2006)

10. Sturtevant, A.H., Beadle, G.W.: The relation of inversions in the x-chromosome of drosophila
melanogaster to crossing over and disjunction. Genetics 21, 554–604 (1936)

11. Sturtevant, A.H., Dobzhansky, Th.: Inversions in the third chromosome of wild races of
drosophila pseudoobscura and their use in the study of the history of the species. Proc. Nat’l
Acad. Sci., USA 22, 448–450 (1936)

12. Tannier, E., Sagot, M.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukr-
ishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidel-
berg (2004)

Internal Validation of Ancestral Gene Order

Reconstruction in Angiosperm Phylogeny

David Sankoff1, Chunfang Zheng1, P. Kerr Wall2, Claude dePamphilis2,
Jim Leebens-Mack3, and Victor A. Albert4

1 Dept. of Mathematics & Statistics and Dept. of Biology, University of Ottawa,
Ottawa, ON, Canada K1N 6N5
{sankoff,czhen033}@uottawa.ca

2 Biology Department, Penn State University,
University Park, PA 16802, USA
{pkerrwall,cwd3}@psu.edu

3 Department of Plant Biology, University of Georgia,
Athens, GA 30602, USA

jleebensmack@plantbio.uga.edu
4 Department of Biological Sciences, SUNY Buffalo,

Buffalo, NY 14260, USA
vaalbert@buffalo.edu

Abstract. Whole genome doubling (WGD), a frequent occurrence dur-
ing the evolution of the angiopsperms, complicates ancestral gene order
reconstruction due to the multiplicity of solutions to the genome halving
process. Using the genome of a related species (the outgroup) to guide the
halving of a WGD descendant attenuates this problem. We investigate
a battery of techniques for further improvement, including an unbiased
version of the guided genome halving algorithm, reference to two related
genomes instead of only one to guide the reconstruction, use of draft
genome sequences in contig form only, incorporation of incomplete sets
of homology correspondences among the genomes and addition of large
numbers of “singleton” correspondences. We make use of genomic dis-
tance, breakpoint reuse rate, dispersion of sets of alternate solutions and
other means to evaluate these techniques, while reconstructing the pre-
WGD ancestor of Populus trichocarpa as well as an early rosid ancestor.

1 Introduction

The reconstruction of the gene order in ancestral genomes requires that we make
a number of choices, among the data on which to base the reconstruction, in the
algorithm to use and in how to evaluate the result. In this paper we illustrate
an approach to making these choices in the reconstruction of the ancestor of the
poplar Populus trichocarpa genome. This species has undergone whole genome
duplication [3,11,14] followed by extensive chromosomal rearrangement, and is
one of four angiosperm genomes, along with those of Carica papaya (papaya),
Vitis vinifera (grapevine) and Arabidopsis thaliana, that have been sequenced
to date, shown in Figure 1.

C.E. Nelson and S. Vialette (Eds.): RECOMB-CG 2008, LNBI 5267, pp. 252–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Internal Validation of Ancestral Gene Order Reconstruction 253

Vitis

Arabidopsis

Carica

Populus

Fig. 1. Phylogenetic relationships among angiosperms with sequenced genomes. The
circles indicate likely whole genome doubling events. The circle in the Populus lineage,
representing the locus of the WGD event at the origin of the willow-poplar family,
and the square, representing the ancestor of the rosid dicotyledons, indicate the target
ancestors we reconstruct in this paper.

We have been developing methods to incorporate descendants of whole genome
doubling into phylogenies of species that have been unaffected by the doubling
event. The basic tool in analyzing descendants of whole genome doubling is
the halving algorithm [4]. To overcome the propensity of the genome halving
procedure to produce numerous, widely disparate solutions, we “guide” the ex-
ecution of this procedure with information from genomes from related species
[18,10,17,19,20], which we call outgroups. This, ipso facto, integrates the whole
genome doubling descendant into the phylogeny of the related species.

Issues pertaining to data include

Homology sets. Can we use defective sets of homologs, i.e., those which
have only one copy in the duplicated genome or are missing the ortholog
completely in the guide genome?
Singletons. Should we purge singletons from the data, i.e., sets of homolo-
gous markers that have no homologous adjacent markers in common in the
either the duplicated genome or the outgroup?
Contigs. Can we use guide genomes that are not fully assembled, but are
available only as sets of hundreds or thousands of contigs?

Another choice to be made during reconstruction has to do with the guided
halving algorithm itself. The original genome halving problem, with no reference
to outgroup genomes, can be solved in time linear in the number of markers [4].
We can introduce information from an outgroup in order to guide this solution,
without compromising the optimality of the result and without serious increase
in computing time [17,20]. We call this constrained guided halving. The true,
unconstrained, guided halving problem, however, where the solution ancestor
need not be a solution of the original halving problem, is likely to be NP-hard
[12]. In the heuristics necessary for these two approaches, there is a trade-off
between the speed and quality of constrained halving versus the unbiased and
possibly better solution obtainable by unconstrained halving.

254 D. Sankoff et al.

Once we make our choices of data and algorithm, we may ask how to evaluate
the results. As with most evolutionary reconstructions, this evaluation is neces-
sarily completely internal, since there is no outside reference to check against,
except simulations. There are many indices for evaluating a reconstruction.

Distance. Most important, there is the objective function; here our genomic
distance definition attempts to recover the most economical explanation of
the observed data, namely the minimum number of rearrangement events
(reversals, reciprocal translocations, chromosome fusions/fissions, transposi-
tions) required.
Reuse rate. Each rearrangement operation can create at most two break-
points in the gene-by-gene alignment of two genome and its ancestor. When
rearranged genomes are algorithmically reconstructed, however, some break-
points may be reused. If d is the number of rearrangements and b the num-
ber of breakpoints, the reuse [6] variable r = 2d/b can take on values in
1 ≤ r ≤ 2. Completely randomized genomes will have r close to 2, so that if
an empirical comparison has r ∼ 2, we cannot ascribe much significance to
the details of the reconstruction [9]. This is particularly likely to occur for
genomes that are only very distantly related.
Dispersion. The motivation for guided halving is to resolve the ambiguities
inherent in the large number of solutions. One way to quantify the remaining
non-uniqueness is to calculate the distances among a sample of solutions.

In this paper we will refer repeatedly to a main tabulation of results, Table 1,
in which we discover the unexpected rapid evolution of the Carica gene order
in comparison with that of Vitis. In Section 2, we report on the origin and pro-
cessing of our gene-order data and the construction of the full and defective
homology sets. Then, in Section 3, we discuss the formulation of genomic dis-
tances and the halving problems, and sketch a new algorithm for unconstrained
guided halving. In Section 4 we evaluate the utility of singletons and of defective
homology sets. Then, in Section 5 we assess the two guided halving algorithms
on real and simulated data. Section 6 proposes a way to use unassembled genome
sequence in contig form as input to the reconstruction algorithm, an approach
that could potentially have wide use in gene order phylogeny. In Section 7 we
demonstrate the phylogenetic validity of reconstructing the Populus ancestor us-
ing either Vitis or Carica, or both, as outgroups. Note that we have not included
Arabidopsis in our analyses; as will be explained in Section 8, this was dictated
by a paucity of data in the appropriate configurations.

2 The Populus, Vitis and Carica Data

Annotations for the Populus, Vitis and Carica genomes were obtained from
databases maintained by the U.S. Department of Energy’s Joint Genome In-
stitute [14], the French National Sequencing Center, Genoscope [5], and the
University of Hawaii [8], respectively. An all-by-all BLASTP search was run on
a data set including all Populus and Vitis protein coding genes, and orthoMCL

Internal Validation of Ancestral Gene Order Reconstruction 255

[7] was used to construct 2104 full and 4040 defective gene sets, in the first
case, denoted PPV, containing two poplar paralogs (genome P) and one grape
ortholog (genome V), and in the second case, denoted PV or PP, missing a copy
from either P or V. This was repeated with Populus and Carica, genomes P and
C, respectively, to obtain 2590 full (PPC) and 4632 defective (PC or PP) sets.
The location on chromosomes (or contigs in the case of Carica) and orientation
of these paralogs and orthologs was used to construct our database of gene orders
for these genomes. Contigs containing only a single gene were discarded from the
Carica data.

3 Genome Distance, Breakpoint Graph, Guided Halving

Genome comparison algorithms generally involve manipulations of the bicoloured
breakpoint graph [1,13] of two genomes, called the black and the gray genomes, on
the same set of n genes, where two vertices are defined representing the two ends
of each gene, and an edge of one colour joins two vertices if the corresponding gene
ends are adjacent in the appropriate genome. Omitting the details pertaining to
the genes at the ends of chromosomes, the genomic distance d, i.e., the minimum
number of rearrangements necessary to transform one genome into the other, sat-
isfies d = n− c, where c is the number of alternating colour cycles making up the
breakpoint graph [16].

Then the genome halving problem [4] asks, given a genome T with two copies
of each gene, distributed in any manner among the chromosomes, to find the
“ancestral” genome, written A ⊕ A, consisting of two identical halves, i.e., two
identical sets of chromosomes with one copy of each gene in each half, such that
the rearrangement distance d(T, A ⊕ A) between T and A ⊕ A is minimal. Note
that part of this problem is to find an optimal labeling as “1” or “2” of the two
genes in a pair of copies, so that all n copies labeled “1” are in one half of A⊕A
and all those labeled “2” are in the other half. The genome A represents the
ancestral genome at the moment immediately preceding the WGD event giving
rise to A ⊕ A.

The guided genome halving problem [18] asks, given T as well as another
genome R containing only one copy of each of the n genes, find A so that
d(T, A ⊕ A) + d(A, R) is minimal. The solution A need not be a solution to
the original halving problem.

In previous studies [18,10,17], we found that the solution of the guided halving
problem is often a solution of the original halving problem as well, or within a
few rearrangements of such a solution. This has led us to define a constrained
version of the guided halving problem, namely to find A so that A ⊕ A is a
solution to the original halving problem and d(T, A ⊕ A) + d(A, R) is minimal.
This has the advantage that a good proportion of the computation, namely
the halving aspect, is guaranteed to be rapid and exact, although the overall
algorithm, which is essentially a search among all optimal A, remains heuristic.
Without sketching out the details of the lengthy algorithm, the addition of gray
edges representing genome A to the breakpoint graph, as in Figure 2, must favour

256 D. Sankoff et al.

Table 1. Guided halving solutions with and without singletons, constrained and un-
constrained heuristics, Vitis or Carica as outgroup, and all combinations of full and
defective homolgy sets. A: pre-doubling ancestor of Populus, A⊕A: doubled ancestor,
PPV, PPC: full gene sets, PP: defective, missing grape or papaya ortholog, PV,PC:
defective, missing one poplar paralog. d: genomic distance, b, number of breakpoints,
r = 2d/b: the reuse statistic.

genes in A, d(A, V itis) d(A⊕A, Populus) total
data sets with singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPV 2104 638 751 1.70 454 690 1.32 1092
PPV,PP 2940 649 757 1.71 737 1090 1.35 1386
PPV,PV 5308 1180 1331 1.77 1083 1457 1.49 2263
PPV,PP, PV 6144 1208 1363 1.77 1337 1812 1.48 2545

Solutions unconstrained

PPV 2104 593 734 1.62 512 733 1.40 1105
PPV, PP 2940 616 752 1.64 778 1119 1.39 1394
PPV,PV 5308 1121 1307 1.72 1147 1486 1.54 2268
PPV,PP,PV 6144 1129 1328 1.70 1437 1871 1.54 2566

genes in A, d(A, Carica) d(A⊕A, Populus) total
data sets with singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPC 2590 896 1152 1.56 565 823 1.37 1461
PPC, PP 3478 905 1158 1.56 884 1282 1.38 1789
PPC,PC 6334 1892 2314 1.64 1262 1700 1.48 3154
PPC,PP,PC 7222 1925 2341 1.64 1541 2065 1.49 3466

Solutions unconstrained

PPC 2590 864 1125 1.54 628 870 1.44 1492
PPC, PP 3478 873 1125 1.55 951 1318 1.44 1824
PPC,PC 6334 1859 2277 1.63 1321 1742 1.52 3180
PPC,PP,PC 7222 1877 2313 1.62 1617 2126 1.52 3494

genes in A, d(A, V itis) d(A⊕A, Populus) total
data sets without singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPV 2020 560 661 1.69 346 541 1.28 906
PPV,PP 2729 594 690 1.72 453 714 1.27 1047
PPV,PV 4203 573 686 1.67 751 1031 1.46 1324
PPV,PP, PV 4710 675 797 1.69 856 1211 1.41 1531

Solutions unconstrained

PPV 2020 545 652 1.67 375 564 1.33 920
PPV, PP 2729 567 681 1.67 493 745 1.32 1060
PPV,PV 4203 544 674 1.61 782 1034 1.51 1326
PPV,PP,PV 4710 631 785 1.61 916 1250 1.47 1547

genes in A, d(A, Carica) d(A⊕A, Populus) total
data sets without singletons d b r d b r d

Solutions constrained to also be solutions of genome halving

PPC 2464 772 1014 1.52 412 607 1.36 1184
PPC, PP 3226 812 1058 1.53 536 809 1.33 1348
PPC,PC 4651 779 1054 1.48 774 1050 1.47 1554
PPC,PP,PC 5234 898 1206 1.49 892 1253 1.42 1790

Solutions unconstrained

PPC 2464 758 1001 1.51 454 639 1.42 1212
PPC, PP 3226 796 1046 1.52 584 839 1.39 1380
PPC,PC 4651 764 1041 1.47 804 1090 1.48 1568
PPC,PP,PC 5234 861 1178 1.46 952 1303 1.46 1813

Internal Validation of Ancestral Gene Order Reconstruction 257

x——y

x——y

x——y

x——y

x——y

x——y

x——y

x——y

x——z

x——y

x——y

y——v

x——z

y——v

T

R

T

R

x——z

x——y
T

R

y——v

x——y

x——z

x——y

y——v

x——y

x——z

x——y
T

R

y——v

x——v

y——z

x——z

x——y

y——v

x——v

y——z

(a) (c)

(b) (d)

Fig. 2. Choice of gray edge to add at each stage of the reconstruction of A and A ⊕
A. Each black edge in the diagram represents either an adjacency in T or R or an
alternating colour path with a black edge at each end point. If vertex w is copy “1” in
T then w̄ is copy “2”, and vice versa. (a) Configuration requiring the creation of three
cycles, two in the breakpoint graph of T and A⊕A, and one in the breakpoint graph of
A and R. (b) Configuration requiring the creation of two cycles in the breakpoint graph
of T and A⊕ A, necessary for A⊕ A to be a solution of the genome halving problem.
(c) Alternative configuration if solution of guided halving A⊕A is not also required to
be a solution of the halving problem. (d) Look-ahead when there are no configurations
(a), (b) or (c). Here the addition of three gray edges creates a configuration (c).

configuration (b) over (c), even though there are as many cycles created by (c) as
by (b). This is a consequence of the original halving theory in Ref. [4]. Otherwise
A⊕A may not be a halving solution. This, however, may bias the reconstruction
of A towards T and away from R. For the present work, we implemented a new
version of the algorithm, as sketched in Section 3.1, treating configurations (b)
and (c) equally in constructing A. The choice among two or more configurations
of form (b) or (c) is based on a look-ahead calculation of what effect this choice
will have on the remaining inventory of configurations of form (b) and (c). The
new algorithm requires much more computation, but its objective function is
better justified.

3.1 The New Algorithm

First we define paths, which represent intermediate stages in the construction of
the breakpoint graph comparing T and A⊕A and the breakpoint graph compar-
ing A and R. Then we define pathgroups, which focus on the three current paths
leading from three “homologous” vertices in the graph, namely two copies in T
and one in R. Note that each vertex represents one of the two ends of a gene.

258 D. Sankoff et al.

Paths. We define a path to be any connected fragment of a breakpoint graph,
namely any connected fragment of a cycle. We represent each path by an un-
ordered pair (u, v) = (v, u) consisting of its current endpoints, though we keep
track of all its vertices and edges. Initially, each black edge in T is a path, and
each black edge in R is a path.

Pathgroups. A pathgroup, as in Figure 2, is an ordered triple of paths, two in
the partially constructed breakpoint graph involving T and A⊕A and one in the
partially constructed breakpoint graph involving R and A, where one endpoint
of one of the paths in T is the duplicate of one endpoint of the other path in T
and both are orthologous to one of the endpoints of the path in R. The other
endpoints may be duplicates or orthologs to each other, or not.

In adding pairs of gray edges to connect duplicate pairs of terms in the break-
point graph of T versus A ⊕ A, (which is being constructed), our approach is
basically greedy, but with a careful look-ahead. We can distinguish four differ-
ent levels of desirability, or priority, among potential gray edges, i.e., potential
adjacencies in the ancestor.

Recall that in constructing the ancestor A to be close to the outgroup R,
such that A ⊕ A is simultaneously close to T , we must create as many cycles as
possible in the breakpoint graphs between A and R and in the breakpoint graph
of A ⊕ A versus T . At each step we add three gray edges.

– Priority 1. Adding the three gray edges would create two cycles in the break-
point graph defined by T and A⊕ A, by closing two paths, and one cycle in
the breakpoint graph comparison of A with the outgroup, as in Figure 2a.

– Priority 2. Adding three gray edges would create two cycles, one for T and one
for the outgroup, or two for T and none for the outgroup, as in Figure 2b and c.

– Priority 3. Adding the gray edges would create only one cycle, either in the
T versus A ⊕ A comparison, or in the R versus A comparison. In addition,
it would create a higher priority pathgroup, as in as in Figure 2d.

– Priority 4. Adding the gray edges would create only one cycle, but would
not create any higher priority pathgroup.

Thealgorithmsimply completes the steps suggestedby thehighestprioritypath-
group currently available, choosing among equal priority pathgroups according to
a look-ahead to the configuration of priorities resulting from competing moves.

At each step, we must verify that a circular chromosome is not created, oth-
erwise the move is blocked. As with Ref. [4] this check requires a constant time.
The algorithm terminates when no more pathgroups can be completed. Any
remaining pathgroups define additional chromosomes in the ancestor A.

4 On the Utility of Singletons and Defective Homology
Sets

From the last column of Table 1, it is clear that of the four factors, inclu-
sion/exclusion of singletons, inclusion/exclusion of defective homology sets, out-
group species and heuristic, the largest effects on total genomic distance are due

Internal Validation of Ancestral Gene Order Reconstruction 259

to the choice of homology sets and inclusion of singletons, while the heuristic
used has a much smaller effect. We will return to the differences between the
algorithms in Section 5, and to the choice of outgroup in Section 7, but we can
observe here that the inclusion of the homology sets defective by virtue of one
missing Populus copy increases the genomic distances disproportionately and
also reduces the quality of the inference, as measured by r in all the analyses
containing singletons, and all the Populus-A ⊕ A comparisons.

At the same time the inclusion of singletons had a major effect on the distance,
especially where the PV or PC homology sets are included. In addition, by
comparing all the sub-tables with singletons, in the top half of the table, with the
corresponding sub-table without singletons, in the bottom half, the inclusion of
singletons degrades the analysis, with few exceptions, as measured by an increase
in the two r statistics, the one pertaining to the duplicated genome and the one
pertaining to the outgroup.

5 Comparison of the Heuristics

In Table 1, the constrained guided halving algorithm always does better than
the unconstrained guided halving heuristic, as measured by the total distance in
the last column. At the same time, the unconstrained heuristic had a clear effect
in reducing the bias towards Populus, in each case decreasing the distance to the
outgroup, compared to the constrained heuristic. This decrease was accompanied
by a small decrease in r for the outgroup analysis.

In fact the decrease in the bias was far greater than the increase in total cost,
meaning that if bias reduction is important, then this heuristic is worthwhile,
despite its inability to find a minimizing ancestor and its lengthy execution time.

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Outgroup distance (proportion of total distance)

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 c

o
n
s
tr

a
in

e
d
 h

a
lv

in
g
 a

n
d
 t

ru
e

h
a
lv

in
g
 h

e
u
ri
s
ti
c
 r

e
s
u
lt
s

895

900

905

910

915

920

100 200 300 400 500 600 700 800 900

Simulated outgroup distance (out of 1000

rearrangements)

In
fe

rr
e
d
 t

o
ta

l
d
is

ta
n
c
e

Fig. 3. Performance of the constrained and unconstrained heuristics as a function of
the real (left) or simulated (right) distance of the outgroup from A

260 D. Sankoff et al.

To further investigate the behaviour of the new algorithm, we simulated evo-
lution by M inversions and translocations (in a 10:1 proportion) from a genome
A to produce a genome R and 1000−M rearrangements from genome A⊕A to
produce a genome T . We then applied the constrained and the new algorithms,
showing that the new one was superior when M < 800, but not for M ≥ 1000,
as seen in Figure 3 (right). Considering the 16 comparisons between the con-
strained and the new algorithm, the change in the total distance also shows a
distinct correlation (ρ2 = 0.5) with the distance from the outgroup and A. We
point this out even though the constrained algorithm, as we have seen, seems
superior when the distance between R and A is more than 20 % of the total
distance. This is plotted in Figure 3 (left).

The difference between the simulations, where the new method is always su-
perior, and the real analysis, where the new method would seem to be superior
only when the outgroup is very close to the ancestor, must be ascribed to some
way the model used for the simulations does not fit the data. One clue is the rela-
tively high reuse rate in the comparison between the outgroup and A, compared
with that between Populus and A ⊕ A.

6 Rearrangements of Partially Assembled Genomes

Our analyses involving Carica have incorporated an important correction. The
genomic distance between Carica and A counts many chromosome fusion events
that reduce the number of “chromosomes” in Carica from 223 to the 19. These
are not a measure of the true rearrangement distance, but only of the current
state of the Carica data. Since these may be considered to take place as a first
step in the rearrangement scenario [16], we may simply subtract their number
from d to estimate the true distance. At the same time, many of the breakpoints
between A and Carica are removed by these same fusions, so these should be
removed from the count of b as well. The calculations in Table 2 illustrate how
the d(A, Carica) results in the bottom quarter of Table 1 were obtained.

Table 2. Correction for contig data. A: pre-doubling ancestor of Populus, A ⊕ A:
doubled ancestor, PPC: full gene sets, PP: defective, missing papaya ortholog, PC:
defective, missing one poplar paralog. d: genomic distance, b: number of breakpoints,
r = 2d/b: the reuse statistic, c: number of contigs, d − c + 9: distance corrected for
excess of contigs over true number of chromosomes, a: number of ‘obvious fusions”.
Data without singletons. Solutions obtained by constrained algorithm.

d(A,Carica) correction
data sets genes in A d b uncorrected r c d− c + 9 a b− a corrected r

PPC 2464 986 1090 1.81 223 772 76 1014 1.52
PPC, PP 3226 1027 1132 1.81 224 812 74 1058 1.53
PPC,PC 4651 1084 1177 1.84 314 779 123 1054 1.48
PPC,PP,PC 5234 1214 1318 1.84 325 898 112 1206 1.49

Internal Validation of Ancestral Gene Order Reconstruction 261

Figure 4 (left) shows experimental results on how the increasing fragmenta-
tion of a genome into contigs, using a random fragmentation of Vitis grenome,
decreases the estimated distance between Vitis and A. This is understandable,
since the freedom of the contigs to fuse in any order without this counting as a
rearrangment step, inevitably will reduce the distance by chance alone. But the
linearity of the result suggests that this decrease is quite predictable, and that
the estimates of the distance between Carica and A are actually underestimates
by about 10 %.

300

350

400

450

500

550

600

0 100 200 300 400 500 600 700 800

contigs

d
is
ta
n
c
e

0

2

4

6

8

10

12

14

16

18

20

20-24 25-29 30-34 35-39 40-44 45-49

distance between solutions

fr
e
q
u
e
n
c
y

Fig. 4. Left: Effect of increasing fragmentation of Vitis into “contigs” on the distance
between the reconstructed A and Vitis. Right: Distributions of distances among solu-
tions for A based on Vitis data (white bars) and among solutions for Vitis fragmented
into contigs in different random ways (gray bars).

Figure 4 (right) shows that creating contigs by randomly breaking the Vi-
tis genome does not create excessive variability among the solutions, only the
same as the dispersion of alternate solutions for the original Vitis data, a few
percentage points of the distance itself.

7 A Comparison of the Outgroups

Perhaps the most surprising result of this study is that the Vitis gene order is
decidedly closer to Populus and its ancestor A than Carica is. Both the Tree
of Life and the NCBI Taxonomy Browser currently exclude the Vitaceae family
from the rosids, though some older taxonomies do not make this distinction.

Before interpreting this result, we should correct two sources of error in the
comparison of Vitis and Carica. The first is that the Carica distances are based
on a larger gene set; without singletons and defective homology sets PPC is

262 D. Sankoff et al.

22 % larger than PPV. As a rule of thumb, we can expect distances to be ap-
proximately proportional to the number of genes. This overestimation of the
Carica-ancestor distance might account for about half the difference in the dis-
tances. But the other source of error is due to the contig data, and this results
in an underestimate of the Carica-ancestor distance. From Figure 4, we can es-
timate that the Carica distances are underestimated by about 10 % because of
the 223 contigs in the Carica data. So this increases the discrepancy between
the two outgroups, restoring it almost to what it was before the corrections.

We may conclude that this difference is genuine and substantial. Then as-
suming that Populus and Carica have a closer phylogenetic relationship, or even
a sister relationship, our results can only be explained by a faster rate of gene
order evolution in Carica than in Vitis.

7.1 Using Both Outgroups

There are 1734 complete homologous gene sets including two Populus copies
and one copy in each of Carica and Vitis. In the same way that the uncon-
strained algorithm in Section 3 is based on a modification of the guided halving
algorithm for one outgroup in reference [17], we could define an unconstrained
version of the two-outgroup guided halving algorithm implemented in that earlier
work. For convenience, however, we use the constrained version of two-outgroup
guided halving from reference [17] to find the ancestor (small circle) genome in
Figure 5(a) as a first step, then compute the “median” genome based on this
ancestor, Carica and Vitis. The median problem here is to find the genome,
the sum of whose distances from ancestor A, Carica and Vitis is minimal. This
problem is NP-hard [12] and solving it is barely feasible with the 1734 genes in
our data, requiring some 300 hours of MacBook computing time.

This initial result unfortunately inherits the same defect as the Carica data,
i.e., it is composed of contigs rather than true chromosomes. In this case, the
median genome contains 118 “contig-chromosomes”. And in the same way, we
may correct it by subtracting the number of contigs in excess of a reasonable
number of chromosomes (19 in the median) from the distance in order to obtain
a corrected distance. This corresponds to disregarding the fusions counted in the
original distance that are essentially carrying out an optimal assembly, modeling
an analytical process, not a biological one. This produces the corrected values
in Figure 5(b).

Let us compare the distance from Vitis and from Carica to ancestor A, passing
through the median, in Figure 5 (517 and 577, respectively), with the minimum
distances1 in Table 1, and proportionately adjusted for the reduced number of
genes (560× 1734

2020 = 481 and 772× 1734
2464 = 543, respectively. Passing through the

median modestly augments (by 36 and by 34, respectively) both trajectories. But
using the median diminishes the total cost of the phylogeny, i.e., in comparison
with a phylogeny where there is no common evolutionary divergence of the out-
groups from Populus from 481+170+543+170 = 1364 to 517+577+170 = 1264.

1 Constrained analyses, no singleton or defective homology sets.

Internal Validation of Ancestral Gene Order Reconstruction 263

grape

papaya

poplar

446

631

269

grape

papaya

poplar

286

781

306

grape

papaya

poplar

347

407

170

grape

papaya

poplar

275

469

295

Rearrangement median Breakpoint median

corrected distance corrected distance

(a) (b) (c) (d)

Fig. 5. Branch lengths in angiosperm phylogeny, using two estimates of the median,
and applying the contig correction

There is one version of guided halving that is of polynomial complexity [12].
This involves a “general breakpoint model” for multichromosomal genomes,
which does not explicitly refer to rearrangements. Running this algorithm, re-
quiring only 15 MacBook minutes, on the three angiosperm genomes results in
a median with only 30 contig-chromosomes. Calculating the rearrangement dis-
tances from this median to ancestor A, Carica and Vitis gives the results in
Figure 5(c); correcting them for excess contigs gives the results in Figure 5(d).

Figures 5(b) confirm that the papaya genome has evolved more rapidly than
the grapevine one. Figure 5(d) shows an even greater distance, although this is
not based on the rearrangement median.

8 Conclusions

The main contributions of this paper are:

– The discovery of the rapid rate of gene order evolution in Carica compared
to Vitis,

– Away to use incompletely assembled contigs in genome rearrangement studies,
– A new unbiased algorithm for guided genome halving, and
– The systematic use of reuse rates to show that the inclusion of defective ho-

mology sets and singletons are not helpful in ancestral genome reconstruction.

In this work, we have not considered the Arabidopsis genome. The main reason
is not any algorithmic issue, but the paucity of full homology sets containing four
Arabidopsis copies as well as copies from one or more outgroups.

References

1. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM
Journal of Computing 25, 272–289 (1996)

2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

264 D. Sankoff et al.

3. Cui, L., Wall, P.K., Leebens-Mack, J.H., Lindsay, B.G., Soltis, D.E., Doyle, J.J.,
Soltis, P.S., Carlson, J.E., Arumuganathan, K., Barakat, A., Albert, V.A., Ma, H.,
de Pamphilis, C.W.: Widespread genome duplications throughout the history of
flowering plants. Genome Research 16, 738–749 (2006)

4. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM Jour-
nal on Computing 32, 754–792 (2003)

5. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., et al.: The grapevine
genome sequence suggests ancestral hexaploidization in major angiosperm phyla.
Nature 449, 463–467 (2007), http://www.genoscope.cns.fr/externe/English/

Pro-jets/Projet ML/data/annotation/

6. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proceedings of the National Academy
of Sciences USA 100, 7672–7677 (2003)

7. Li, L., Stoeckert Jr., C.J., Roos, D.S.: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Research 13, 2178–2189 (2003)

8. Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., et al.: The draft genome
of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452,
991–996 (2008), http://asgpb.mhpcc.hawaii.edu

9. Sankoff, D.: The signal in the genomes. PLoS Computational Biology 2, e35 (2006)
10. Sankoff, D., Zheng, C., Zhu, Q.: Polyploids, genome halving and phylogeny. Bioin-

formatics 23, i433–i439 (2007)
11. Soltis, D., Albert, V.A., Leebens-Mack, J., Bell, C.D., Paterson, A., Zheng, C.,

Sankoff, D., dePamphilis, C.W., Wall, P.K., Soltis, P.S.: Polyploidy and angiosperm
diversification. American Journal of Botany (in press, 2008)

12. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. In: Workshop on Algorithms in Bioinfor-
matics WABI 2008 (in press, 2008)

13. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements.
Journal of Computer and System Sciences 65, 587–609 (2002)

14. Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., et al.: The
genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313,
1596–1604 (2006)

15. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., et al.: A
high quality draft consensus sequence of the genome of a heterozygous grapevine
variety. PLoS ONE 2, e13–e26 (2007)

16. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

17. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness,
heuristics and the history of the Hemiascomycetes. Bioinformatics 24, i96–i104
(2008)

18. Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evolutionary
Bioinformatics 2, 319–326 (2006)

19. Zheng, C., Zhu, Q., Sankoff, D.: Descendants of whole genome duplication within
gene order phylogeny. Journal of Computational Biology 15 (in press, 2008)

20. Zheng, C., Wall, P.K., Leebens-Mack, J., Albert, V.A., dePamphilis, C.W., Sankoff,
D.: The effect of massive gene loss following whole genome duplication on the
algorithmic reconstruction of the ancestral Populus diploid. In: Proceedings of the
International Conference on Computational Systems Bioinformatics CSB 2008 (in
press, 2008)

http://www.genoscope.cns.fr/externe/English/Pro-jets/Projet_ML/data/annotation/
http://www.genoscope.cns.fr/externe/English/Pro-jets/Projet_ML/data/annotation/
http://asgpb.mhpcc.hawaii.edu

Author Index

Albert, Victor A. 252

Badescu, Dunarel 128
Bergeron, Anne 226
Bérard, Sèverine 158
Bernt, Matthias 143
Bertrand, Denis 198
Blanchette, Mathieu 128, 198

Chateau, Annie 158
Chauve, Cedric 1, 158
Costello, James C. 14
Csűrös, Miklós 72

dePamphilis, Claude 252
Diallo, Abdoulaye Baniré 128
Domazet-Los̆o, Mirjana 87
Doyon, Jean-Philippe 1

El-Mabrouk, Nadia 198

Felder, Yifat 55
Friedberg, Richard 170

Hahn, Matthew W. 14
Hamel, Sylvie 1
Han, Mira V. 14
Haubold, Bernhard 87
Hemphill, Edward 26, 40

Jin, Guohua 113
Jun, Jin 26, 40

Leebens-Mack, Jim 252
Leong, Hon Wai 100
Lin, Yu 241

Makarenkov, Vladimir 128
Măndoiu, Ion 40
Merkle, Daniel 143
Middendorf, Martin 143
Mixtacki, Julia 226
Moret, Bernard M.E. 241

Nakhleh, Luay 113
Nelson, Craig 26, 40

Ozery-Flato, Michal 211

Paul, Christophe 158

Rajan, Vaibhav 241
Ryvkin, Paul 26, 40

Sankoff, David 252
Shamir, Ron 211
Stoye, Jens 226
Swenson, Krister M. 241

Tannier, Eric 158
Than, Cuong 113
Tuller, Tamir 55

Wall, P. Kerr 252
Wiehe, Thomas 87

Xu, Andrew Wei 184

Yancopoulos, Sophia 170

Zhang, Melvin 100
Zheng, Chunfang 252

	Title Page
	Preface
	Organization
	Table of Contents
	Algorithms for Exploring the Space of Gene Tree/Species Tree Reconciliations
	Introduction
	Preliminaries
	Counting and Uniform Random Generation
	Exhaustive Exploration of the Whole Space Ψ(G, S)
	Space Exploration Operators
	Algorithm for the Exhaustive Exploration

	Experimental Results
	Conclusion
	References

	Limitations of Pseudogenes in Identifying Gene Losses
	Introduction
	Data
	Drosophila Genomes
	Defining Gene Families
	Drosophila Sequences

	Results
	Gene Losses

	Discussion
	Funding
	References

	Duplication Mechanism and Disruptions in Flanking Regions Influence the Fate of Mammalian Gene Duplicates
	Introduction
	There Are Several Mechanisms of Gene Duplication
	Factors Influencing the Fate of Duplicated Genes Remain Unresolved

	Methods
	Sequence Retrieval and Protein Family Identification
	Clustering of Orthologs
	Inference of Duplication Events
	Distinguishing between Gene Duplication Mechanisms
	Computing Pairwise dN/dS
	Determining Rate Asymmetry
	Detection of Disrupted Flanking Regions

	Results
	Prevalence of Gene Duplication Types
	Pairwise Analysis of Duplicate Age and Divergence
	Tandem Duplications Show Lower Asymmetry in Selective Constraint
	Disruptions in Flanking Regions of Distant Segmental Duplicates Are Associated with Greater Asymmetry in dN and Relaxed Selective Constraint

	Discussion
	Prevalence of Duplication Mechanisms
	Pairwise dS Differs across Duplication Types
	Duplicate Rate Asymmetry

	References

	Estimating the Relative Contributions of New Genes from Retrotransposition and Segmental Duplication Events during Mammalian Evolution
	Introduction
	Methods
	Dataset
	Identification of RT and SD Events
	Event Assignment to Tree Branches and Evidence of Function

	Results
	Lineage Distribution of Duplication Events
	Rates of Duplication
	Functional Preservation Rates
	Distribution of Duplication Events within the Mammalian Tree

	Discussion
	Identification and Characterization of Gene Duplications During Mammalian Evolution
	Rates of Duplication
	The Fate of Newly Duplicated Genes

	References

	Discovering Local Patterns of Co-evolution
	Introduction
	Definitions and Preliminaries
	Hardness Issues
	Methods
	Heuristics and Algorithms
	P-Values and GO Enrichments
	Implementation
	The Biological Inputs

	Experimental Results
	Synthetical Inputs
	Biological Inputs: Results and Discussion

	Conclusions
	References

	Ancestral Reconstruction by Asymmetric Wagner Parsimony over Continuous Characters and Squared Parsimony over Distributions
	Introduction
	Algorithmic Results
	Problem Statement
	General Solution by Dynamic Programming
	Asymmetric Wagner Parsimony
	Squared Parsimony

	Gene Content Evolution in Archaea
	Data and Methods
	Results

	Conclusion
	References
	A Species Names and Abbreviations

	An Alignment-Free Distance Measure for Closely Related Genomes
	Introduction
	Approach and Data
	Definition of \kr
	Asymmetric Values of \kr
	Implementation
	Phylogenetic Analysis
	Data Sets

	Results
	Clustering of Simulated DNA Sequences
	Clustering Primate Mitochondrial Genomes
	Clustering ${Streptococcus agalactiae}$ Genomes
	Clustering $Drosophila$ Genomes

	Discussion
	References

	Gene Team Tree: A Compact Representation of All Gene Teams
	Introduction
	Related Work
	Problem Definition
	Notations and Definitions
	Problem Formulation

	Our Approach: Gene Team Tree
	Basic GeneTeamTree Algorithm
	Correctness of GeneTeamTree
	Time Complexity of GeneTeamTree
	Speeding Up GeneTeamTree
	Handling Multiple Chromosomes

	Experiments
	GTT for E. coli K-12 and B. ${subtilis}$
	GTT for Human and Mouse

	Conclusion and Future Work
	References

	Integrating Sequence and Topology for Efficient and Accurate Detection of Horizontal Gene Transfer
	Introduction
	Materials and Methods
	Topology-Based HGT Detection and the RIATA-HGT Tool
	Assessing the Support of HGT Edges
	Parsimony-Based HGT Detection and the NEPAL Tool
	IntegratingMP and Topological Comparison
	Validating the Integrative Approach
	Data

	Results and Discussion
	Conclusions and Future Work
	References

	An Evolutionary Study of the Human Papillomavirus Genomes
	Introduction
	Indel Analysis of HPV Genomes and Reconciliation of HPV Gene Trees
	Algorithm for the Identification of Putatively Carcinogenic Regions
	Results, Discussion and Conclusion
	References
	Appendix

	An Algorithm for Inferring Mitogenome Rearrangements in a Phylogenetic Tree
	Introduction
	Basic Definitions
	Rearrangement Operations
	Common Intervals and Strong Interval Trees

	Algorithm \texttt{CREx}
	Algorithm Tree\texttt{\TREx}
	Consistency
	Method
	Extensions

	A Detailed Small Biological Example
	Results
	Teleosts
	Echinoderms

	Conclusion
	References
	Appendix
	A1. Mitogenomes Used in the Biological Example
	Pseudo-Code of Algorithm Tree\texttt{\TREx}

	Perfect DCJ Rearrangement
	Introduction
	Genomes, Intervals and Rearrangements
	Perfect DCJ Scenarios
	Families of Common Intervals
	${\cal F}$ Nested: A Polynomial-Time Solvable Case
	${\cal F}$ General (Even Weakly Separable): A Hardness Result
	Conclusion
	References
	A The DCJ Distance and The Breakpoint Graph

	Sorting Genomes with Insertions, Deletions and Duplications by DCJ
	Introduction
	The Adjacency Graph
	Insertions and Deletions
	Distance Rule for Insertions/Deletions
	The Triangle Inequality
	The Free Lunch Problem
	Surcharge Rule
	Hybrid Paths

	Multiple Copies
	Equal Genomic Content
	Unequal Genomic Content

	Conclusion
	Summary of Rules
	Questions to Be Answered
	Concluding Remarks

	References

	A Fast and Exact Algorithm for the Median of Three Problem—A Graph Decomposition Approach
	Introduction
	Graphs, Subgraphs and More
	Breakpoint Graph
	Multiple Breakpoint Graph and Median Graph
	Subgraphs
	Non-crossing 0-Matchings and Decomposers
	Adequate and Strongly Adequate Subgraphs

	The Properties of Simple Adequate Subgraphs of Rank 3
	More Properties about Adequate Subgraphs of Rank 3
	There Are Infinite Many Simple Adequate Subgraphs

	Inventorying Simple Adequate Subgraphs
	It Is Practical to Use Simple Adequate Subgraphs of Small Sizes
	Algorithms to Inventory Simple Adequate Subgraphs
	Simple Adequate Subgraph Enumerated

	Solving the Median of Three Problem by Recursively Detecting Simple Adequate Subgraphs
	Examining the Intermediate MBGs
	The Lower Bound and the Upper Bound
	The Optimistic Search Schema

	Results on Simulated Data
	The Running Time for Simulated Data Sets with Varying n and n and $\pi=\rho/n$}
	The Effect of Adequate Subgraph Discovery on Speed-Up

	Conclusion
	References

	A Phylogenetic Approach to Genetic Map Refinement
	Introduction
	Gene Order Data and Representation as Graphs
	Methodology
	Integrating Maps
	Marker Content of Internal Nodes
	Minimizing an Evolutionary Distance

	Algorithms
	A Heuristic for the Minimum-Kemeny Linearization Problem
	A Heuristic for the Minimum-Breakpoint Linearization Problem
	The General Method

	Experiments on the Gramene Database
	Conclusion
	References

	Sorting Cancer Karyotypes by Elementary Operations
	Problem Formulation
	The KS Problem
	Reducing KS to RKS

	A Lower Bound for the Elementary Distance
	Extending the Karyotypes
	The Histogram
	Counting Complementing End Pairs
	Simple Bricks
	The Weighted Bipartite Graph of Bricks

	The 3-Approximation Algorithm
	Experimental Results
	Data Preprocessing
	Sorting the Karyotypes
	Operations Statistics

	Discussion
	References

	On Computing the Breakpoint Reuse Rate in Rearrangement Scenarios
	Introduction
	Preliminaries
	BreakpointReuseRate
	Bounding the Breakpoint Reuse Rate
	Lower Bounds
	Upper Bounds
	Bounds of the Reuse Rate

	Reuse Rates in the Mouse-Human Whole Genome Comparison
	Conclusion
	References
	Appendix 1. The Dataset
	Appendix 2. Cycles and Paths
	Appendix 3. A Sorting Scenario with Minimum Number of Cuts

	Hurdles Hardly Have to Be Heeded
	Introduction
	Preliminaries
	The Rarity of Hurdles and Fortresses
	On the Proportion of Unsafe Cycle-Splitting Inversions
	Conclusions
	References

	Internal Validation of Ancestral Gene Order Reconstruction in Angiosperm Phylogeny
	Introduction
	The Populus, Vitis and Carica Data
	Genome Distance, Breakpoint Graph, Guided Halving
	The New Algorithm

	On the Utility of Singletons and Defective Homology Sets
	Comparison of the Heuristics
	Rearrangements of Partially Assembled Genomes
	A Comparison of the Outgroups
	Using Both Outgroups

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

